IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007631.html
   My bibliography  Save this article

Study on the kinetic characteristics and control steps of gas production in coal spontaneous combustion under the oxidation path

Author

Listed:
  • Li, Jinliang
  • Lu, Hao
  • Lu, Wei
  • Li, Jinhu
  • Zhang, Qingsong
  • Zhuo, Hui

Abstract

The low-temperature oxidation of coal involves multiple gas production paths including desorption, pyrolysis and oxidation. These paths interfere with each other, resulting in unclear kinetic characteristics of CO and CO2 production in coal oxidation and incomplete mechanism of gas production. Therefore, this paper proposed a method that can effectively exclude the effects of desorption and pyrolysis on gas production and adopted this method to explore the kinetic characteristics of CO and CO2 production under different paths. Besides, with the aid of microscopic characterization methods, the kinetic steps controlling gas production and the mechanism of gas production were analyzed. The experimental results demonstrate that the proposed method can effectively eliminate the effects of desorption and pyrolysis, and can obtain the kinetic characteristics of gas production under the oxidation path that can reflect the intrinsic characteristics of low-temperature oxidation of coal. Based on the difference method, the activation energies of CO and CO2 produced under the oxidation path are 59.49 kJ/mol and 60.09 kJ/mol, which activation energies are almost the same, suggesting that CO and CO2 are likely to be produced from the same precursor. The gas production in low-temperature oxidation is a process in which methylene groups in coal react with oxygen to generate oxygen-containing intermediates which then decompose to produce CO and CO2. The reaction of methylene groups with oxygen is the control step of gas production kinetics in coal spontaneous combustion, resulting in the same apparent activation energies of CO and CO2 production in the stable phase under the oxidation path.

Suggested Citation

  • Li, Jinliang & Lu, Hao & Lu, Wei & Li, Jinhu & Zhang, Qingsong & Zhuo, Hui, 2024. "Study on the kinetic characteristics and control steps of gas production in coal spontaneous combustion under the oxidation path," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007631
    DOI: 10.1016/j.energy.2024.130991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.