IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics036054422302947x.html
   My bibliography  Save this article

Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals

Author

Listed:
  • Zhang, Xun
  • Lu, Bing
  • Qiao, Ling
  • Ding, Cong

Abstract

This study investigated the influence of OH free radicals on the reactivity of aromatic rings and their side chain active groups. Quantum chemistry theory and in situ diffuse reflectance infrared Fourier transform spectroscopy were applied to perform simulations and experiments. Density functional theory was used to calculate the electrophilic substitution of aromatic hydrocarbons of six model structures by OH free radicals. The reactivities of the key elementary reaction of the side chain active group before and after the reaction were compared. The results showed that the reaction energy barriers of the addition and elimination of OH radicals of aromatic hydrocarbons were lower than 40 kJ/mol, indicating that the reactions can occur at room temperature and emit large amounts of heat. The electronic effect of phenolic hydroxyl and benzene rings further improved the reactivity of the aromatic ring C–H. Combining these results with the change rule of the phenolic hydroxyl structure in coal under isothermal oxidation conditions, we conclude that OH radicals participate in the formation of the phenolic hydroxyl structure and further catalyze the oxidation reaction of coal at low temperatures. This finding is significant for the heat storage stage of low-temperature oxidation in coal.

Suggested Citation

  • Zhang, Xun & Lu, Bing & Qiao, Ling & Ding, Cong, 2023. "Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s036054422302947x
    DOI: 10.1016/j.energy.2023.129553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302947X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Guodong & Li, Zenghua & Yang, Jingjing & Yang, Yongliang & Liu, Hao, 2023. "Microstructure evolution and higher-molecular-weight gas emission during the low temperature oxidation of coal," Energy, Elsevier, vol. 282(C).
    2. Zhang, Yanni & Shu, Pan & Deng, Jun & Duan, Zhengxiao & Li, Lele & Zhang, Lulu, 2022. "Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion," Energy, Elsevier, vol. 254(PA).
    3. Jun Deng & Yang Xiao & Junhui Lu & Hu Wen & Yongfei Jin, 2015. "Application of composite fly ash gel to extinguish outcrop coal fires in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 881-898, November.
    4. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    5. Li, Lei & Ren, Ting & Zhong, Xiaoxing & Wang, Jiantao, 2022. "Study of ambient temperature oxidation in low metamorphic coal and the oxidation mechanism," Energy, Elsevier, vol. 252(C).
    6. Li, Jin-liang & Lu, Wei & Li, Jin-hu & Zhang, Qinsong & Zhuo, Hui, 2022. "Thermodynamics of oxygen-containing intermediates and their role in coal spontaneous combustion," Energy, Elsevier, vol. 260(C).
    7. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).
    8. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    9. Cai, Jiawen & Yu, Zhaoyang & Yang, Shengqiang & Tang, Jingxia & Ma, Zhenqian & Xie, Xionggang & Hu, Xincheng, 2023. "Fractal characteristics of coal surface structure during low-temperature oxidation and its effect on oxidizability," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
    2. Li, Jinhu & Lu, Wei & Li, Jinliang & Yang, Yongliang & Li, Zenghua, 2023. "Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal," Energy, Elsevier, vol. 272(C).
    3. Huang, Jiliang & Tan, Bo & Gao, Liyang & Shao, Zhuangzhuang & Wang, Haiyan & Chen, Zhen, 2023. "A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal," Energy, Elsevier, vol. 283(C).
    4. Lei Li & Ting Ren & Xiaoxing Zhong & Jiantao Wang, 2023. "Study of the Oxidation Characteristics and CO Production Mechanism of Low-Rank Coal Goaf," Energies, MDPI, vol. 16(8), pages 1-16, April.
    5. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    6. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).
    7. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    8. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    9. Qu, Baolin & Zhu, Hongqing & Tian, Rui & Hu, Lintao & Wang, Jingxin & Liao, Qi & Gao, Rongxiang & Wang, Haoran, 2023. "Investigation of the impact of pyrite content on the terahertz dielectric response of coals and rapid recognition with kernel-SVM," Energy, Elsevier, vol. 285(C).
    10. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    11. Liu, Qiqi & Sun, Lulu & Zhang, Yanbo & Liu, Zhenyi & Ma, Jiayu, 2023. "Effects of water immersion and pre-oxidation on re-ignition characteristics of non-caking coal," Energy, Elsevier, vol. 282(C).
    12. Li, Jin-liang & Lu, Wei & Li, Jin-hu & Zhang, Qinsong & Zhuo, Hui, 2022. "Thermodynamics of oxygen-containing intermediates and their role in coal spontaneous combustion," Energy, Elsevier, vol. 260(C).
    13. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    14. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni & Zhang, Jiaxin, 2023. "Inhibiting effect and mechanism of polyethylene glycol - Citric acid on coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    15. Changkui Lei & Xueqiang Shi & Lijuan Jiang & Cunbao Deng & Jun Nian & Yabin Gao, 2023. "Study on the Effect of External Air Supply and Temperature Control on Coal Spontaneous Combustion Characteristics," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    16. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    17. Yu Liu & Bo Li & Chuanping Wu & Baohui Chen & Tejun Zhou, 2021. "Risk warning technology for the whole process of overhead transmission line trip caused by wildfire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 195-212, May.
    18. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong & Han, Yaozhong, 2023. "Effects of oxidation on physical and chemical structure of a low rank sub-bituminous coal during the spontaneous combustion latency," Energy, Elsevier, vol. 272(C).
    19. Liu, Qiqi & Sun, Lulu & Liu, Zhenyi & Wang, Gang & Ma, Jiayu, 2023. "Effects of air volume and pre-oxidation on re-ignition characteristics of bituminous coal," Energy, Elsevier, vol. 265(C).
    20. Guansheng Qi & Hao Hu & Wei Lu & Lulu Sun & Xiangming Hu & Yuntao Liang & Wei Wang, 2022. "Influence of Mine Environmental Factors on the Liquid CO 2 Pipeline Transport System with Great Altitude Difference," IJERPH, MDPI, vol. 19(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s036054422302947x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.