IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics036054422400851x.html
   My bibliography  Save this article

Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments

Author

Listed:
  • Jin, Guangrong
  • Liu, Jie
  • Su, Zheng
  • Feng, Chuangji
  • Cheng, Sanshan
  • Zhai, Haizhen
  • Liu, Lihua

Abstract

The gas production rate from hydrate trials is still below commercial criterion. To increase the production rate, a promising geological system consisting of hydrate, associated and shallow gas layers was explored recently. Herein, the gas production of this complex geological system through depressurization was numerically investigated. The result showed a high gas production rate in the first tens day, and a subsequently slow decrease with an increasing water production rate under the immediate depressurization condition. The free gas layer contributed the most of gas production while the least is from hydrate reservoir. For water production, the most was from the associated gas layer and a moderate from hydrate layer. Among all factors, the depressurization rate affected greatly the initial gas rate, and slight depressurization caused a high and stable rate. The permeability, gas saturation and irreducible water saturation of the shallow gas layer affected dramatically the gas rate and obviously the corresponding water rate. Special attention should be paid to the hydrate forming in the shallow gas layer. This hydrate barrier caused a decrease of gas rate when reducing production pressure. The production of the complex system enhances the economic benefit, and it becomes a prospective system of exploration.

Suggested Citation

  • Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s036054422400851x
    DOI: 10.1016/j.energy.2024.131079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400851X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s036054422400851x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.