IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005644.html
   My bibliography  Save this article

Experimental study of thermal stability and spread characteristics of gel-protein foam for liquid tank fires

Author

Listed:
  • Tian, Chang
  • Zhao, Jinlong
  • Li, Xinjiang
  • Chen, Cheng
  • Zhang, Jianping
  • Huang, Hong

Abstract

Gel foams have been increasingly used for extinguishing coal fires due to its high thermal stability. However, their applications in liquid fuel fires are very limited because of its high viscosity. In this work, the thermal stability and spread performance of -gel-protein foams were examined for tanks fires against a commercial fluorinated foam (FF). Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM) of the gel-protein foams were analyzed to unravel its gelling mechanism. The extinguishing mechanism of the foams was also investigated. The results showed that the gel-protein foam attached by a dense gel film layer, formed by –COO- and Ca2+, can efficiently improve its foam stability. The gel-protein foam also showed good thermal stability with a collapse time of more than 1800 s, a 50% increase over FF. and a water loss temperature of 156 °C, 15 °C higher than that of FF. The gel-protein foam also demonstrated excellent firefighting efficiency in the gasoline tank fire extinguishing tests with a faster spreading rate compared with FF due to the formation of the ‘egg-box’ gel structure by calcium alginate.

Suggested Citation

  • Tian, Chang & Zhao, Jinlong & Li, Xinjiang & Chen, Cheng & Zhang, Jianping & Huang, Hong, 2024. "Experimental study of thermal stability and spread characteristics of gel-protein foam for liquid tank fires," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005644
    DOI: 10.1016/j.energy.2024.130792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.