IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223016080.html
   My bibliography  Save this article

Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case

Author

Listed:
  • Liu, Wei
  • Zhang, Fengjie
  • Gao, Tiegang
  • Chu, Xiangyu
  • Qin, Yueping

Abstract

Conventional nitrogen injection in longwall gobs often fails to achieve the expected fire protection effect due to the lack of cooling function. To address this issue, a technical solution of cooling nitrogen injection was proposed to prevent the coal spontaneous combustion (CSC) in gobs, and the corresponding deep-cooling equipment system was developed. This system was applied on-site in a coal mine in China and had achieved favorable cooling results. Furthermore, the multi-physics coupling model of CSC in gob was upgraded to be applicable to nitrogen injection conditions. The effects of nitrogen injection parameters were then quantitatively evaluated. The results show that (i) the cooling nitrogen entering the gob can significantly reduce the temperature of the high-temperature zone, about 5 °C, thus effectively reducing the risk of the CSC in gobs; (ii) the simulation results under nitrogen injection are in good agreement with the on-site data, which verifies the accuracy of the nitrogen injection model; (iii) there is an optimal location of the nitrogen injection point in gob, which can suppress the CSC to the maximum extent. This technology of cooling nitrogen injection can be further promoted and applied to other mines with severe spontaneous combustion.

Suggested Citation

  • Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016080
    DOI: 10.1016/j.energy.2023.128214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    2. Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).
    3. Gang Wang & Yue Wang & Lulu Sun & Xiang Song & Qiqi Liu & Hao Xu & Wenzhou Du, 2018. "Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Yi Lu & Botao Qin, 2015. "Identification and control of spontaneous combustion of coal pillars: a case study in the Qianyingzi Mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2683-2697, February.
    5. Shi, Quanlin & Qin, Botao & Hao, Yinghao & Li, Hongbiao, 2022. "Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire," Energy, Elsevier, vol. 247(C).
    6. Yi Zhang & Jun Xu & Deming Wang, 2020. "Experimental Study on the Inhibition Effects of Nitrogen and Carbon Dioxide on Coal Spontaneous Combustion," Energies, MDPI, vol. 13(20), pages 1-14, October.
    7. Qingsong Hu & Lixin Wu & Fei Geng & Can Cao, 2014. "A Data Transmission Algorithm Based on Dynamic Grid Division for Coal Goaf Temperature Monitoring," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    2. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    3. Liu, Yin & Wen, Hu & Guo, Jun & Jin, Yongfei & Fan, Shixing & Cai, Guobin & Liu, Renfei, 2023. "Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal," Energy, Elsevier, vol. 275(C).
    4. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    5. Yang Yu & Shen-En Chen & Ka-Zhong Deng & Peng Wang & Hong-Dong Fan, 2018. "Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    6. Yang Zhang & Baiwei Lei & Bing Wu & Yu Meng & Binbin He, 2019. "An Experimental Study on the Heat and Mass Transfer of Liquid Nitrogen in a Loose Medium," Energies, MDPI, vol. 12(18), pages 1-17, September.
    7. Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).
    8. He, Yongjun & Deng, Jun & Yi, Xin & Xiao, Yang & Deng, Yin & Chen, Weile, 2023. "Effect of rare-earth-containing inhibitors on the low-temperature oxidation characteristics and thermodynamic properties of coal," Energy, Elsevier, vol. 281(C).
    9. Xi, Xian & Tao, Yifan & Jiang, Shuguang & Yin, Chenchen, 2023. "Study on the formation mechanism and mechanical properties of composite foam slurry material for mine plugging," Energy, Elsevier, vol. 281(C).
    10. Chen, Jian & Lu, Yi & Tang, Guoxin & Yang, Yuxuan & Shao, Shuzhen & Ding, Yangwei, 2023. "Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China," Energy, Elsevier, vol. 275(C).
    11. Youhong Sun & Li He & Shijie Kang & Wei Guo & Qiang Li & Sunhua Deng, 2018. "Pore Evolution of Oil Shale during Sub-Critical Water Extraction," Energies, MDPI, vol. 11(4), pages 1-15, April.
    12. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    13. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    14. Yuguo Wu & Yulong Zhang & Jie Wang & Xiaoyu Zhang & Junfeng Wang & Chunshan Zhou, 2020. "Study on the Effect of Extraneous Moisture on the Spontaneous Combustion of Coal and Its Mechanism of Action," Energies, MDPI, vol. 13(8), pages 1-17, April.
    15. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    16. Chaoyu Hao & Yanling Chen & Jiren Wang & Cunbao Deng & Guang Xu & Fengwei Dai & Rui Si & Hongfei Wang & Haoyu Wang, 2018. "Study on the Effect of Iron-Based Deoxidizing Inhibitors for Coal Spontaneous Combustion Prevention," Energies, MDPI, vol. 11(4), pages 1-10, March.
    17. Tian, Chang & Zhao, Jinlong & Yang, Junhui & Zhang, Jianping & Yang, Rui, 2023. "Preparation and characterization of fire-extinguishing efficiency of novel gel-protein foam for liquid pool fires," Energy, Elsevier, vol. 263(PC).
    18. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    19. Jiuyuan Fan & Gang Wang & Jiuling Zhang, 2019. "Study on Spontaneous Combustion Tendency of Coals with Different Metamorphic Grade at Low Moisture Content Based on TPO-DSC," Energies, MDPI, vol. 12(20), pages 1-18, October.
    20. Kun Xu & Shuang Li & Jiao Liu & Cheng Lu & Guangzhe Xue & Zhengquan Xu & Chao He, 2022. "Evaluation Cloud Model of Spontaneous Combustion Fire Risk in Coal Mines by Fusing Interval Gray Number and DEMATEL," Sustainability, MDPI, vol. 14(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.