IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222003607.html
   My bibliography  Save this article

Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation

Author

Listed:
  • Liu, Wei
  • Chu, Xiangyu
  • Xu, Hao
  • Chen, Wei
  • Ma, Liwei
  • Qin, Yueping
  • Wei, Jun

Abstract

Coal spontaneous combustion (CSC) is a complex physicochemical dynamic evolutionary process. Oxygen consumption rate is commonly used to estimate the intensity of coal-oxygen reactions, but is easily disturbed due to derivation from the volumetric flow rate. To address this issue, a new estimation parameter, called the oxidation reaction constant, was proposed, and modeled using mass flow rate. Its correctness was verified through experiments on the oxidation of coal samples in two inert gas environments (i.e., N2–O2 and CO2–O2), respectively. The ability of N2 or CO2 to inhibit the CSC was also quantitatively evaluated using the oxidation reaction constant. The results show that the oxidation reaction constant is related to the coal's own properties and temperature, but almost independent of the oxygen concentration, which is more appropriate for estimating the oxidation properties of coal. The oxidation reaction constants in CO2–O2 environments are only 40%–85% of those in N2–O2 environments, indicating that CO2 has a stronger inhibitory effect. Furthermore, the stronger the physical adsorption properties of the coal sample to oxygen, the larger its oxidation reaction constant, and the more likely it is to spontaneously combust. This work provides more reasonable characterization parameters for investigating the low-temperature oxidation process of coal.

Suggested Citation

  • Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003607
    DOI: 10.1016/j.energy.2022.123457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abunowara, Mustafa & Sufian, Suriati & Bustam, Mohamad Azmi & Eldemerdash, Usama & Suleman, Humbul & Bencini, Roberto & Assiri, Mohammed Ali & Ullah, Sami & Al-Sehemi, Abdullah G., 2020. "Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions," Energy, Elsevier, vol. 210(C).
    2. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    3. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    4. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
    5. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    2. Liu, Yin & Wen, Hu & Guo, Jun & Jin, Yongfei & Fan, Shixing & Cai, Guobin & Liu, Renfei, 2023. "Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal," Energy, Elsevier, vol. 275(C).
    3. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    4. Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).
    5. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    6. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    7. Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).
    2. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    3. Wang, Kai & Han, Tao & Deng, Jun & Zhang, Yanni, 2022. "Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China," Energy, Elsevier, vol. 254(PB).
    4. Li, Jin-liang & Lu, Wei & Li, Jin-hu & Zhang, Qinsong & Zhuo, Hui, 2022. "Thermodynamics of oxygen-containing intermediates and their role in coal spontaneous combustion," Energy, Elsevier, vol. 260(C).
    5. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    6. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    7. Li, Jinhu & Lu, Wei & Li, Jinliang & Yang, Yongliang & Li, Zenghua, 2023. "Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal," Energy, Elsevier, vol. 272(C).
    8. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    9. Shi, Quanlin & Jiang, Wenjie & Qin, Botao & Hao, Mingyue & He, Zhenyu, 2023. "Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of Shendong long-flame coal," Energy, Elsevier, vol. 284(C).
    10. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).
    11. Lei Li & Ting Ren & Xiaoxing Zhong & Jiantao Wang, 2022. "Study of the Abnormal CO-Exceedance Phenomenon in the Tailgate Corner of a Low Metamorphic Coal Seam," Energies, MDPI, vol. 15(15), pages 1-16, July.
    12. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    13. Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
    14. Hua Wang & Wei Zhang & Haihui Xin & Deming Wang & Cuicui Di & Lu Liu, 2021. "Characteristics of Pyrolysis and Low Oxygen Combustion of Long Flame Coal and Reburning of Residues," Energies, MDPI, vol. 14(10), pages 1-17, May.
    15. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    16. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).
    17. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    18. Li, Lei & Ren, Ting & Zhong, Xiaoxing & Wang, Jiantao, 2022. "Study of ambient temperature oxidation in low metamorphic coal and the oxidation mechanism," Energy, Elsevier, vol. 252(C).
    19. Zhang, Yanni & Shu, Pan & Deng, Jun & Duan, Zhengxiao & Li, Lele & Zhang, Lulu, 2022. "Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion," Energy, Elsevier, vol. 254(PA).
    20. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.