IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003979.html
   My bibliography  Save this article

Multi-criteria optimal design of small wind turbine blades based on deep learning methods

Author

Listed:
  • Jordi, Zavala J.
  • Erasmo, Cadenas
  • Rafael, Campos-Amezcua

Abstract

The development of a Deep Learning (DL) model using multi-criteria optimal design of wind turbine blades is presented, focusing on the key variables TSR and Von Mises stress to predict: blade mass, power coefficient and natural frequency. The DL model was trained with data from three mathematical functions generated using distance-weighted inverse interpolation. The model allowed the generation of multiple feasible designs, which satisfy the design constraints. The BEM theory was used in the generation of the aerodynamic model of the 12.5 kW wind turbine using the NREL-S818 airfoil. Subsequently, the structural behavior of the blades was analyzed under three design load cases specified in IEC 61400-2. The results showed that in the training phase, the MAE, MSE and MSR error metrics were an essential guide in the development of the DL model. Interesting behaviors were observed due to the diverse results obtained, which are probably due to the multidimensional fits that are difficult to observe in the fit functions generated. However, training between 200 and 250 epochs performed better, with errors ranging from 0.05 to 0.120 for the MAE. The DL model exhibited the remarkable ability to predict the optimal output variables, with accuracy ranging from 90% to 98%.

Suggested Citation

  • Jordi, Zavala J. & Erasmo, Cadenas & Rafael, Campos-Amezcua, 2024. "Multi-criteria optimal design of small wind turbine blades based on deep learning methods," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003979
    DOI: 10.1016/j.energy.2024.130625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.