IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics036054422303579x.html
   My bibliography  Save this article

Distributionally robust planning for data center park considering operational economy and reliability

Author

Listed:
  • Wang, Zhiying
  • Wang, Yang
  • Ji, Haoran
  • Hasanien, Hany M.
  • Zhao, Jinli
  • Yu, Lei
  • He, Jiafeng
  • Yu, Hao
  • Li, Peng

Abstract

Digitization has dramatically facilitated the development of internet data centers (IDCs), which have become necessary demand response resources for distribution networks. To improve equipment utilization, integrated coordination of IDCs, photovoltaics, energy storage systems, and flexible substations is essential. This also ensures power supply reliability and the operational economy of IDC park. This paper proposes a distributionally robust planning method for an IDC park considering operational economy and reliability. First, a coordinated planning model of an IDC park is proposed with multiple resources, in which the workload dispatch of the IDC is incorporated under fault conditions. The reliability index of the IDC park is designed to quantify its reliability cost. Then, considering the fluctuation of distributed generators and workload, a distributionally robust planning model is established. A planning scheme for the IDC park under the worst scenario probability distribution is obtained. Furthermore, the influence of uncertainties on the planning scheme is analyzed. Finally, a practical data center park is used for case studies. The established planning scheme effectively balances the operational economy, reliability, and planning conservatism.

Suggested Citation

  • Wang, Zhiying & Wang, Yang & Ji, Haoran & Hasanien, Hany M. & Zhao, Jinli & Yu, Lei & He, Jiafeng & Yu, Hao & Li, Peng, 2024. "Distributionally robust planning for data center park considering operational economy and reliability," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422303579x
    DOI: 10.1016/j.energy.2023.130185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303579X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Qionghai & Shao, Shuangquan & Zhang, Hainan & Tian, Changqing, 2019. "Development and composition of a data center heat recovery system and evaluation of annual operation performance," Energy, Elsevier, vol. 189(C).
    2. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    3. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.
    4. Huang, Yongping & Deng, Zilong & Chen, Yongping & Zhang, Chengbin, 2023. "Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers," Applied Energy, Elsevier, vol. 335(C).
    5. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    6. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).
    7. Cao, Yujie & Cheng, Ming & Zhang, Sufang & Mao, Hongju & Wang, Peng & Li, Chao & Feng, Yihui & Ding, Zhaohao, 2022. "Data-driven flexibility assessment for internet data center towards periodic batch workloads," Applied Energy, Elsevier, vol. 324(C).
    8. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    9. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang, 2021. "Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities," Applied Energy, Elsevier, vol. 301(C).
    10. Cho, Jinkyun & Park, Beungyong & Jang, Seungmin, 2022. "Development of an independent modular air containment system for high-density data centers: Experimental investigation of row-based cooling performance and PUE," Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    2. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    3. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    4. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    5. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    6. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    7. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    8. Liu, Xiaoou, 2024. "Research on collaborative scheduling of internet data center and regional integrated energy system based on electricity-heat-water coupling," Energy, Elsevier, vol. 292(C).
    9. Lei Su & Wenxiang Wu & Wanli Feng & Junda Qin & Yuqi Ao, 2024. "Collaborative Planning of Distribution Network, Data Centres and Renewable Energy in the Power Distribution IoT via Interval Optimization," Energies, MDPI, vol. 17(15), pages 1-26, July.
    10. Xu, Da & Xiang, Shizhe & Bai, Ziyi & Wei, Juan & Gao, Menglu, 2023. "Optimal multi-energy portfolio towards zero carbon data center buildings in the presence of proactive demand response programs," Applied Energy, Elsevier, vol. 350(C).
    11. Cao, Yujie & Cao, Fang & Wang, Yajing & Wang, Jianxiao & Wu, Lei & Ding, Zhaohao, 2024. "Managing data center cluster as non-wire alternative: A case in balancing market," Applied Energy, Elsevier, vol. 360(C).
    12. Cao, Yujie & Zhang, Sufang, 2023. "Facilitating the provision of load flexibility to the power system by data centers: A hybrid research method applied to China," Utilities Policy, Elsevier, vol. 84(C).
    13. Han, Ouzhu & Ding, Tao & Mu, Chenggang & Jia, Wenhao & Ma, Zhoujun, 2023. "Waste heat reutilization and integrated demand response for decentralized optimization of data centers," Energy, Elsevier, vol. 264(C).
    14. Chen, Xiaoyuan & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Zhou, Pang & Yang, Ruohuan & Shen, Boyang, 2023. "Energy reliability enhancement of a data center/wind hybrid DC network using superconducting magnetic energy storage," Energy, Elsevier, vol. 263(PA).
    15. Liu, Wenyu & Yan, Yuejun & Sun, Yimeng & Mao, Hongju & Cheng, Ming & Wang, Peng & Ding, Zhaohao, 2023. "Online job scheduling scheme for low-carbon data center operation: An information and energy nexus perspective," Applied Energy, Elsevier, vol. 338(C).
    16. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    17. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    18. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    19. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    20. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422303579x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.