IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033388.html
   My bibliography  Save this article

Novel Co3O4 decorated with rGO nanocatalyst to boost microwave-assisted biodiesel production and as nano-additive to enhance the performance-emission characteristics of diesel engine

Author

Listed:
  • Maleki, Basir
  • Kalanakoppal Venkatesh, Yatish
  • Esmaeili, Hossein
  • Haddadi, Masoumeh
  • Mithun Prakash, Ravikumar
  • Balakrishna, Geetha R.

Abstract

In this study, a novel Co3O4 decorated with rGO nanocatalyst was utilized in synergy with microwave heating as a novel approach for the generation of biodiesel. In this process, 98.04 % biodiesel yield was achieved by adopting response surface methodology algorithm under MEOH/oil molar ratio of 12.75:1, Co3O4@rGO loading of 1.53 wt%, microwave time of 7.17 min, and stirring speed of 512 rpm. The catalyst can be reused for seven times with biodiesel yields beyond 85 %. Co3O4@rGO was used as a nano-additive in the diesel engine to investigate the emission and performance of biodiesel blended with diesel. The Co3O4@rGO nanoparticles were dispersed into the B20 fuel with concentrations of 50 and 100 ppm. The outcomes discovered that the brake thermal efficiency of B20Co3O4@rGO50 is 1.22 % greater than B20, and the brake specific fuel consumption is declined by 5.05 %. The emissions from the diesel engine i.e. CO (29.88 %) and UHC (16.38 %) were significantly lowered compared to B20. The emission of NOx for B20Co3O4@rGO100 is 7.4 % lower than B20 and greater than conventional petrodiesel. Owing to its remarkable stability, excellent biodiesel yield, effective utilization in diesel engine, and high catalytic activity, the Co3O4@rGO is strongly proposed for industrial biodiesel generation utilizing microwave radiation.

Suggested Citation

  • Maleki, Basir & Kalanakoppal Venkatesh, Yatish & Esmaeili, Hossein & Haddadi, Masoumeh & Mithun Prakash, Ravikumar & Balakrishna, Geetha R., 2024. "Novel Co3O4 decorated with rGO nanocatalyst to boost microwave-assisted biodiesel production and as nano-additive to enhance the performance-emission characteristics of diesel engine," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033388
    DOI: 10.1016/j.energy.2023.129944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.