IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223032784.html
   My bibliography  Save this article

Influence of selective infrared emissivity design on the radiative cooling effect of windows: Laws exploration based on transient analysis

Author

Listed:
  • Xu, Bin
  • Fei, Yue
  • Chen, Xing-ni
  • Xie, Xing
  • Pei, Gang

Abstract

Most existing material design studies assume that radiative cooling (RC) windows should be ideal radiators with high emissivity (ελ∼1) in wide infrared band (IR, 2.5–20 μm). However, whether this assumption is universal has not been tested. Different from previous studies based on experiments and steady-state theoretical calculation models, a transient building heat transfer model with facade windows verified by experiments is used to explore the optimal design of IR emissivity of RC windows. Results show that the RC effect of windows is not always improved as traditionally expected with the increase of emissivity (ε‾NAW) in the infrared " non-atmospheric window (NAW) " band. In fact, the adjustment trend of ε‾NAW for the RC effect of windows is reversed. Smaller ε‾NAW can weaken the heat flow into the room and prolong the time that windows become " coolers ". A wider range of window-to-wall ratios are also studied, and it is found that the design of selective high emissivity (ε‾NAW ∼0) is more conducive to the RC of windows. It is proved that the current default design of the RC window emissivity in IR band is non-universal, and new laws found provide an enlightening guide for the material development of RC windows.

Suggested Citation

  • Xu, Bin & Fei, Yue & Chen, Xing-ni & Xie, Xing & Pei, Gang, 2024. "Influence of selective infrared emissivity design on the radiative cooling effect of windows: Laws exploration based on transient analysis," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032784
    DOI: 10.1016/j.energy.2023.129884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.