IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics036054422303027x.html
   My bibliography  Save this article

Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields

Author

Listed:
  • Liang, Yunhang
  • Bi, Xueqing
  • Zhao, Yunlong
  • Tian, Runnan
  • Zhao, Peihe
  • Fang, Wenjing
  • Liu, Bing

Abstract

Electric field improving hydrates decomposition has broad applications in methane extraction and transportation, which benefits from polarization of water molecular and subsequent low energy cost. However, it is still challenging whether there are approaches to further accelerate decomposition of methane hydrates. Herein, molecular dynamics simulations are performed to investigate the effects of five electric fields on methane hydrates, including terahertz bidirectional pulsed electric field (BPEF), terahertz unidirectional pulsed electric field (PEF0.5), terahertz sinusoidal electric field (SEF), terahertz sinusoidal electric field with duty cycle of 50 % (SEF0.5) and static electric field (DC). We propose that BPEF, at amplitude of 0.06 V/Å and frequency of 18.5 THz, achieve highest efficiency in hydrate decomposition. The underlying mechanism is revealed to involve BPEF-induced structural phase transition of hydrate from crystalline to liquid due to resonance of electric field with vibration modes of water. Furthermore, Amplitudes of BPEF show positive correlation in promoting methane hydrate decomposition, while frequencies close to 1.8, 7.0 and 18.5 THz exhibit superior decomposition efficiency. Increasing amplitude from 0.12 to 0.16 at 1.8 THz accelerates the hydrate decomposition by 29-fold. These findings are expected to improve hydrate extraction and transportation and promote the application of terahertz electric field to hydrate domains.

Suggested Citation

  • Liang, Yunhang & Bi, Xueqing & Zhao, Yunlong & Tian, Runnan & Zhao, Peihe & Fang, Wenjing & Liu, Bing, 2024. "Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422303027x
    DOI: 10.1016/j.energy.2023.129633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303027X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422303027x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.