IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipas0306261921013155.html
   My bibliography  Save this article

Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆

Author

Listed:
  • Kou, Xuan
  • Feng, Jing-Chun
  • Li, Xiao-Sen
  • Wang, Yi
  • Chen, Zhao-Yang

Abstract

Memory effect of gas hydrate is a double-edged sword in hydrate-based application and natural gas hydrates exploitation. In this work, in order to acquire a comprehensive understanding of memory effect, we conduct a series of experiments on hydrate reformation and dissociation under different grain filling patterns and thermal history conditions. Experimental results reveal that the memory effect can not only shorten the induction time of hydrate nucleation but also significantly reduce the hydrate formation rate by enhancing the homogeneous distribution of gas hydrate in pores. The homogeneous hydrate distribution under memory effect has been further investigated and evaluated by the hydrate heterogeneity degree and dead-end porosity for the first time. More importantly, the decrease in heterogeneity degree and dead-end porosity driven by memory effect shows significant effects on hydrate dissociation behaviors. On the one hand, the improved homogeneous distribution of gas hydrate under memory effect impairs the heat transfer from the environment to hydrate-bearing sediments, thereby reducing the hydrate dissociation rate. On the other hand, the decreased dead-end porosity can lead to the expansion of fluid flow channels in hydrate-bearing sediments, thus increasing the hydrate dissociation rate. These findings are significant for efficient and secure gas production in field tests since the violent gas/water flow in reservoirs would lead to the rapid hydrate reformation during gas production from hydrate-bearing reservoirs.

Suggested Citation

  • Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013155
    DOI: 10.1016/j.apenergy.2021.118015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    2. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    3. Cai, Jing & Tao, Yuan-Qing & von Solms, Nicolas & Xu, Chun-Gang & Chen, Zhao-Yang & Li, Xiao-Sen, 2019. "Experimental studies on hydrogen hydrate with tetrahydrofuran by differential scanning calorimeter and in-situ Raman," Applied Energy, Elsevier, vol. 243(C), pages 1-9.
    4. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    5. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    6. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    7. Sa, Jeong-Hoon & Sum, Amadeu K., 2019. "Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    9. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    10. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    11. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Wan, Kun & Chen, Zhao-Yang, 2021. "Pore-scale analysis of relations between seepage characteristics and gas hydrate growth habit in porous sediments," Energy, Elsevier, vol. 218(C).
    12. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    13. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.
    15. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    16. Cheng, Chuanxiao & Wang, Fan & Qi, Tian & Xu, Peiyuan & Zhang, Quanguo & Zhang, Zhiping & He, Chao & Zhang, Jun & Zheng, Jili & Zhao, Jiafei & Zhang, Hanquan & Xiao, Bo, 2021. "Depressurization-induced changes in memory effect of hydrate reformation correlated with sediment morphology," Energy, Elsevier, vol. 217(C).
    17. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xuebing & Kang, Zhanxiao & Lu, Jingsheng & Fan, Jintu & Zang, Xiaoya & Liang, Deqing, 2023. "Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics," Applied Energy, Elsevier, vol. 336(C).
    2. Alberto Maria Gambelli & Mirko Filipponi & Federico Rossi, 2022. "Sequential Formation of CO 2 Hydrates in a Confined Environment: Description of Phase Equilibrium Boundary, Gas Consumption, Formation Rate and Memory Effect," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    3. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    2. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    3. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    4. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
    5. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    6. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    7. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Wan, Kun & Chen, Zhao-Yang, 2021. "Pore-scale analysis of relations between seepage characteristics and gas hydrate growth habit in porous sediments," Energy, Elsevier, vol. 218(C).
    8. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    9. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    10. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    11. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    12. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    13. Guo, Zeyu & Chen, Xin & Wang, Bo & Ren, Xingwei, 2023. "Two-phase relative permeability of hydrate-bearing sediments: A theoretical model," Energy, Elsevier, vol. 275(C).
    14. Bian, Hang & Qin, Xuwen & Sun, Jinsheng & Luo, Wanjing & Lu, Cheng & Zhu, Jian & Ma, Chao & Zhou, Yingfang, 2023. "The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts," Energy, Elsevier, vol. 274(C).
    15. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    16. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    17. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    18. Liu, Tao & Wu, Peng & You, Zeshao & Yu, Tao & Song, Qi & Song, Yuanxin & Li, Yanghui, 2023. "Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection," Energy, Elsevier, vol. 280(C).
    19. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    20. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.