IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006502.html
   My bibliography  Save this article

Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media

Author

Listed:
  • Kou, Xuan
  • Li, Xiao-Sen
  • Wang, Yi
  • Liu, Jian-Wu
  • Chen, Zhao-Yang

Abstract

Natural gas hydrates have attracted much attention in recent years. It is important to investigate the effects of gas occurrence pattern on hydrate growth habits since distribution and morphology characteristics of gas hydrates have significant effects on physical properties of hydrate-bearing reservoirs. In this work, the differences in distribution and morphology properties of gas hydrates under two gas occurrence patterns have been analyzed via the X-ray computed tomography for the first time. Experimental results reveal direct correlations between the hydrate growth habit and the gas occurrence pattern. In the presence of free gas, grain-attaching hydrates are formed at the arc-shaped contact surface of gas and water, and mass transfer at the gas-water interface is the key controlling factor in hydrate formation process. In the presence of dissolved gas, dispersed and dendritic hydrates are formed in liquid phase as the result of gas solubility change, and gas diffusion is the crucial factor that influences the growth habit and morphology of gas hydrates during hydrate formation from dissolved gas. Besides, the maximum saturation of dendritic hydrates formed from dissolved gas is limited by the gas solubility. These conclusions are valuable in the improvement of prediction accuracy of gas production from hydrate-bearing sediments.

Suggested Citation

  • Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006502
    DOI: 10.1016/j.energy.2021.120401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    2. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    3. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    4. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    5. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2018. "Dissociation characteristics of water-saturated methane hydrate induced by huff and puff method," Applied Energy, Elsevier, vol. 211(C), pages 1171-1178.
    6. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    7. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    8. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    9. Chong, Zheng Rong & Pujar, Girish Anand & Yang, Mingjun & Linga, Praveen, 2016. "Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery," Applied Energy, Elsevier, vol. 177(C), pages 409-421.
    10. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    2. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    3. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    4. Bian, Hang & Qin, Xuwen & Sun, Jinsheng & Luo, Wanjing & Lu, Cheng & Zhu, Jian & Ma, Chao & Zhou, Yingfang, 2023. "The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts," Energy, Elsevier, vol. 274(C).
    5. Li, Xiao-Yan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Hu, Heng-Qi, 2022. "Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes," Applied Energy, Elsevier, vol. 305(C).
    6. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    7. Xu, Rui & Kou, Xuan & Wu, Tian-Wei & Li, Xiao-Sen & Wang, Yi, 2023. "Pore-scale experimental investigation of the fluid flow effects on methane hydrate formation," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Wan, Kun & Chen, Zhao-Yang, 2021. "Pore-scale analysis of relations between seepage characteristics and gas hydrate growth habit in porous sediments," Energy, Elsevier, vol. 218(C).
    2. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    3. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    4. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviorsā˜†," Applied Energy, Elsevier, vol. 306(PA).
    5. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    6. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    7. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    8. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    9. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    10. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    11. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    12. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    13. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    14. Sun, Yi-Fei & Zhong, Jin-Rong & Chen, Guang-Jin & Cao, Bo-Jian & Li, Rui & Chen, Dao-Yi, 2021. "A new approach to efficient and safe gas production from unsealed marine hydrate deposits," Applied Energy, Elsevier, vol. 282(PB).
    15. Yuan, Yilong & Gong, Ye & Xu, Tianfu & Zhu, Huixing, 2023. "Multiphase flow and geomechanical responses of interbedded hydrate reservoirs during depressurization gas production for deepwater environment," Energy, Elsevier, vol. 262(PB).
    16. He, Juan & Li, Xiaosen & Chen, Zhaoyang & You, Changyu & Peng, Hao & Zhang, Zhiwen, 2022. "Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers," Energy, Elsevier, vol. 238(PA).
    17. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Zhang, Yu & Chen, Zhao-Yang, 2020. "Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods," Applied Energy, Elsevier, vol. 277(C).
    18. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    19. Feng, Jing-Chun & Li, Bo & Li, Xiao-Sen & Wang, Yi, 2021. "Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator," Applied Energy, Elsevier, vol. 304(C).
    20. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.