IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925006002.html
   My bibliography  Save this article

Experimental study on natural gas hydrate production under different heat injection well patterns

Author

Listed:
  • Zhang, Long-Hai
  • Wang, Yi
  • Wan, Kun
  • Meng, Te
  • Li, Xiao-Sen

Abstract

Natural gas hydrate is an alternative energy source with both reserve advantages and environmental friendliness. Thermal stimulation is a common method for extracting natural gas hydrate, and how to improve the extraction efficiency of natural gas hydrate by optimizing the layout of thermal injection well pattern is a subject worthy of in-depth exploration. This study conducted three sets of hydrate decomposition experiments in a pilot-scale hydrate simulator (PHS) with an effective volume of 117.8 L under different thermal injection well pattern conditions, including single-point heating, two-point heating, and four-point heating. The gas-water production characteristics and heat transfer processes of the three experimental groups were analyzed, and the real-time decomposition rate and energy efficiency ratio of hydrate decomposition under different extraction methods were quantitatively investigated. Experimental results show that under conditions of consistent total heating rate and hydrate saturation, the cumulative gas production of the experiments remained essentially the same, but increasing the density of heat source arrangements shortened the hydrate extraction time. Compared with two-point and single-point heating, four-point heating intensified heat diffusion, but the reservoir temperature gradient in the four-point heating system decreased compared to single-point and two-point modes. Increasing the density of heating points improved heat exchange efficiency, but the dispersed arrangement of heat sources also increased heat losses. The two-point configuration exhibited the highest gas production rate and energy efficiency ratio, followed by four-point, while single-point showed the lowest values. These results may hold implications for optimizing thermal injection well patterns in trial production projects and future commercial exploitation of natural gas hydrates.

Suggested Citation

  • Zhang, Long-Hai & Wang, Yi & Wan, Kun & Meng, Te & Li, Xiao-Sen, 2025. "Experimental study on natural gas hydrate production under different heat injection well patterns," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006002
    DOI: 10.1016/j.apenergy.2025.125870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Tianwei & Wan, Kun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2023. "Heat utilization efficiency analysis of gas production from hydrate reservoir by depressurization in conjunction with heat stimulation," Energy, Elsevier, vol. 263(PA).
    2. Gambelli, Alberto Maria & Rossi, Federico, 2019. "Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement," Energy, Elsevier, vol. 172(C), pages 423-434.
    3. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    4. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    5. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    6. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    7. Zhao, Yingjie & Hu, Wei & Dou, Xiaofeng & Liu, Zhichao & Ning, Fulong, 2024. "Experimental investigation on the geological responses and production behaviors of natural gas hydrate-bearing sediments under various hydrate saturations and depressurization strategies," Applied Energy, Elsevier, vol. 374(C).
    8. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    9. Li, Xiao-Sen & Wang, Yi & Duan, Li-Ping & Li, Gang & Zhang, Yu & Huang, Ning-Sheng & Chen, Duo-Fu, 2012. "Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff," Applied Energy, Elsevier, vol. 94(C), pages 48-57.
    10. Xu, Chun-Gang & Cai, Jing & Lin, Fu-hua & Chen, Zhao-Yang & Li, Xiao-Sen, 2015. "Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement," Energy, Elsevier, vol. 79(C), pages 111-116.
    11. Wan, Kun & Wang, Yi & Li, Xiao-Sen & Zhang, Long-Hai & Meng, Te, 2024. "Pilot-scale experimental study on natural gas hydrate decomposition with innovation depressurization modes," Applied Energy, Elsevier, vol. 373(C).
    12. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    13. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Zhang, Yu, 2015. "Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir," Applied Energy, Elsevier, vol. 154(C), pages 995-1003.
    14. Chong, Zheng Rong & Pujar, Girish Anand & Yang, Mingjun & Linga, Praveen, 2016. "Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery," Applied Energy, Elsevier, vol. 177(C), pages 409-421.
    15. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    2. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    3. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    4. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    5. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    6. Chong, Zheng Rong & Yin, Zhenyuan & Tan, Jun Hao Clifton & Linga, Praveen, 2017. "Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach," Applied Energy, Elsevier, vol. 204(C), pages 1513-1525.
    7. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    9. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    10. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    12. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    13. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    14. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    15. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    16. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    17. Chen, Bingbing & Liu, Zheyuan & Sun, Huiru & Zhao, Guojun & Sun, Xiang & Yang, Mingjun, 2021. "The synthetic effect of traditional-thermodynamic-factors (temperature, salinity, pressure) and fluid flow on natural gas hydrate recovery behaviors," Energy, Elsevier, vol. 233(C).
    18. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    19. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    20. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.