IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029560.html
   My bibliography  Save this article

Development of a hybridized small modular reactor and solar-based energy system for useful commodities required for sustainable cities

Author

Listed:
  • Temiz, Mert
  • Dincer, Ibrahim

Abstract

The current study develops a hybridized small modular nuclear reactor and solar-based system designed specifically for sustainable communities in metropolitan areas to meet their power, heat, clean fuel, fresh water and food requirements. Both floating-type and bifacial-type photovoltaic arrays are integrated with a high-temperature gas-cooled small modular reactor. In the integrated system, a Rankine cycle subsystem for power generation, a solid oxide electrolyzer for hydrogen production, a pressure swing adsorption unit with ammonia reactor for nitrogen and then ammonia production, a multi-effect desalination unit for freshwater generation, and heat recovery units in order to provide heating to residential area, food drying facility, greenhouse, and fish farm facilities. For both floating and bifacial PV options, the 120 MWp PV modules are considered and integrated with two small modular reactor units at 250 MWth capacities each, 500 MWth in total. A thermodynamic analysis, which is based on energy and exergy approaches, is carried out. The time-dependent analyses are carried out for floating-type PV and bifacial-type PV options for the cities of Istanbul in Turkey; Barcelona in Spain; Los Angeles (LA) in the United States; Tokyo in Japan; and Toronto in Canada by using their hourly meteorological data, source and load capacities in a typical meteorological year. Among ten cases, between 112835 and 146180 tonnes of ammonia are generated in a typical year while meeting the heating and power requirements of sustainable communities in metropolitan areas. Among ten cases, the average overall energy and exergy efficiencies are found as 41.04% and 46.88%, respectively. The hybridization of such nuclear and solar systems achieves unique advantages by preventing intermittencies compared to the renewable-alone systems, reducing carbon emissions compared to fossil-based systems, and lowering the levelized costs of energy compared to the nuclear energy-alone systems.

Suggested Citation

  • Temiz, Mert & Dincer, Ibrahim, 2024. "Development of a hybridized small modular reactor and solar-based energy system for useful commodities required for sustainable cities," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029560
    DOI: 10.1016/j.energy.2023.129562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.