Bio-inspired quad-stable piezoelectric energy harvester for low-frequency vibration scavenging
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128952
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, Jiaxi & Zhao, Xuhui & Wang, Kai & Chang, Yaopeng & Xu, Daolin & Wen, Guilin, 2021. "Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation," Energy, Elsevier, vol. 228(C).
- Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).
- Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
- Li, Haiping & Tian, Ruilan & Xue, Qiang & Zhang, Yangkun & Zhang, Xiaolong, 2022. "Improved variable scale-convex-peak method for weak signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
- Wang, Chaohui & Zhou, Ruoling & Wang, Shuai & Yuan, Huazhi & Cao, Hongyun, 2023. "Structure optimization and performance of piezoelectric energy harvester for improving road power generation effect," Energy, Elsevier, vol. 270(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
- Sui, Guangdong & Shan, Xiaobiao & Chen, Yifeng & Zhou, Chunyu & Hou, Chengwei & Li, Hengyu & Cheng, Tinghai, 2024. "Dual-function of energy harvesting and vibration isolation via quasi-zero stiffness piezoelectric mechanism," Energy, Elsevier, vol. 301(C).
- Poblete, A. & Ruiz, R.O. & Jia, G., 2024. "Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations," Energy, Elsevier, vol. 301(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Yang, GuiJiang & Ai, Hao & Liu, Wei & Wang, Qiubao, 2023. "Weak signal detection based on variable-situation-potential with time-delay feedback and colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Wang, Chaohui & Liu, Jikang & Yuan, Huazhi & Wang, Shuai & Jia, Xiaodong & Lu, Qiang, 2024. "Design and on-site alert effect of piezoelectric device with amplified displacement for improving clean-energy collection," Energy, Elsevier, vol. 307(C).
- Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
- Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
- Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
- Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).
- Yang, Tao & Liu, Jiayi & Luo, Hongchun & Li, Zhixin, 2024. "Improving the performance of nonlinear isolator through triboelectric nanogenerator damper integrating energy harvesting," Energy, Elsevier, vol. 293(C).
- Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Cao, Junyi & Liao, Wei-Hsin, 2022. "Design of a high-performance piecewise bi-stable piezoelectric energy harvester," Energy, Elsevier, vol. 241(C).
- Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
- Wang, Zhixia & Kang, Siwei & Du, Hongzhi & Feng, Pengju & Wang, Wei, 2024. "A high-performance dual-mode energy harvesting with nonlinear pendulum and speed-amplified mechanisms for low-frequency applications," Energy, Elsevier, vol. 306(C).
- Cong, Moyue & Gao, Yongzhuo & Wang, Weidong & He, Long & Mao, Xiwang & Long, Yi & Dong, Wei, 2024. "A broadband hybrid energy harvester with displacement amplification decoupling structure for ultra-low vibration energy harvesting," Energy, Elsevier, vol. 290(C).
- Fu, Jiyang & Zeng, Xianming & Wu, Nan & Wu, Jiurong & He, Yuncheng & Xiong, Chao & Dai, Xiaolong & Jin, Peichen & Lai, Minyi, 2024. "Design, modeling and experiments of bistable piezoelectric energy harvester with self-decreasing potential energy barrier effect," Energy, Elsevier, vol. 300(C).
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
More about this item
Keywords
Nonlinear energy harvester; Bio-inspired; Post-buckled beam; Multi-stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023460. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.