IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029784.html
   My bibliography  Save this article

Spontaneous combustion and oxidation kinetic characteristics of alkaline-water-immersed coal

Author

Listed:
  • Li, Purui
  • Yang, Yongliang
  • Zhao, Xiaohao
  • Li, Jinhu
  • Yang, Jingjing
  • Zhang, Yifan
  • Yan, Qi
  • Shen, Chang

Abstract

Most scholars used distilled-water-immersed coal to study the reasons why water-immersed coal was prone to self-ignition, while mine water in field was mostly alkaline. Thus, the influence of the alkalinity of mine water on the self-ignition properties of water-immersed coal was explored. Experimental results showed that during the low-temperature oxidation process, the CO productions of DL, ZX, XT alkaline-water-immersed coals were higher than that of raw coals when the temperature was increased to 392, 382, 370 K respectively. Compared with raw coals, the average apparent-activation-energies (Ea) of the distilled-water-immersed DL, ZX, XT coals decreased by 6.89%, 5.94%, 7.75%, respectively. Moreover, that of the alkaline-water-immersed coals decreased by 15.83%, 11.76%, 16.64%, respectively. The reduction in the average apparent Ea of the alkaline-water-immersed coal was approximately twice that of the distilled-water-immersed coal. Further investigation revealed that the content of oxygen-containing functional groups in alkaline-water-immersed coals were obviously more than those of the distilled-water-immersed coal. Therefore, the self-ignition ability of the alkaline-water-immersed coal was greater than distilled-water-immersed coal. Compared with the single soaking effect of pure water on coal, many physicochemical variations produced by the reactions of alkali ions with coal may be the main reason for the self-ignition of water-immersed coal.

Suggested Citation

  • Li, Purui & Yang, Yongliang & Zhao, Xiaohao & Li, Jinhu & Yang, Jingjing & Zhang, Yifan & Yan, Qi & Shen, Chang, 2023. "Spontaneous combustion and oxidation kinetic characteristics of alkaline-water-immersed coal," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029784
    DOI: 10.1016/j.energy.2022.126092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kong, Biao & Wang, Enyuan & Lu, Wei & Li, Zenghua, 2019. "Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires," Energy, Elsevier, vol. 189(C).
    2. Peng, Gongzhuang & Wang, Hongwei & Song, Xiao & Zhang, Heming, 2017. "Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models," Energy, Elsevier, vol. 132(C), pages 269-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qiqi & Sun, Lulu & Zhang, Yanbo & Liu, Zhenyi & Ma, Jiayu, 2023. "Effects of water immersion and pre-oxidation on re-ignition characteristics of non-caking coal," Energy, Elsevier, vol. 282(C).
    2. Jiang, Bingyou & Yu, Chang-Fei & Yuan, Liang & Lu, Kunlun & Tao, Wenhan & Lin, Hanyi & Zhou, Yu, 2023. "Investigation on oxidative pyrolysis characteristics of bituminous coal through thermal analysis and density functional theory," Applied Energy, Elsevier, vol. 349(C).
    3. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    2. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    3. Deng, Jun & Yang, Yi & Zhang, Yan-Ni & Liu, Bo & Shu, Chi-Min, 2018. "Inhibiting effects of three commercial inhibitors in spontaneous coal combustion," Energy, Elsevier, vol. 160(C), pages 1174-1185.
    4. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    5. Zhen Liu & Peng Hu & He Yang & Wenzhi Yang & Qingbo Gu, 2022. "Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    6. Lingna Zhong & Juan Zhang & Yanming Ding, 2020. "Energy Utilization of Algae Biomass Waste Enteromorpha Resulting in Green Tide in China: Pyrolysis Kinetic Parameters Estimation Based on Shuffled Complex Evolution," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
    7. Li, Shoujun & Miao, Yanzi & Li, Guangyu & Ikram, Muhammad, 2020. "A novel varistructure grey forecasting model with speed adaptation and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 45-70.
    8. Xu, Yong-liang & Liu, Ze-jian & Wen, Xing-lin & Wang, Lan-yun & Lv, Zhi-guang & Wu, Jin-dong & Li, Min-jie, 2022. "The cataclysmic characteristics for bituminous-coal oxidation under uniaxial stress based on catastrophe theory," Energy, Elsevier, vol. 248(C).
    9. Kong, Xiangguo & He, Di & Liu, Xianfeng & Wang, Enyuan & Li, Shugang & Liu, Ting & Ji, Pengfei & Deng, Daiyu & Yang, Songrui, 2022. "Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process," Energy, Elsevier, vol. 242(C).
    10. Yan, Li & Wen, Hu & Liu, Wenyong & Jin, Yongfei & Liu, Yin & Li, Chuansheng, 2022. "Adiabatic spontaneous coal combustion period derived from the thermal effect of spontaneous combustion," Energy, Elsevier, vol. 239(PB).
    11. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.