IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v25y2000i10p939-955.html
   My bibliography  Save this article

Second-law analysis of a wet crossflow heat exchanger

Author

Listed:
  • San, Jung-Yang
  • Jan, Chin-Lon

Abstract

A second-law analysis of a wet crossflow heat exchanger is performed for various weather conditions. The heat exchanger can be used as an energy-saving device for ventilation in air-conditioning. The heat and mass transfer is solved by using the model developed by Holmberg. The effectiveness, exergy recovery factor and second-law efficiency of the wet heat exchanger are individually defined. The effects of lateral solid heat conduction on the effectiveness, exergy recovery factor and second-law efficiency are numerically investigated for various operating conditions. Two optimum design criteria, one for the maximum second-law efficiency and the other for the maximum exergy recovery factor, are obtained.

Suggested Citation

  • San, Jung-Yang & Jan, Chin-Lon, 2000. "Second-law analysis of a wet crossflow heat exchanger," Energy, Elsevier, vol. 25(10), pages 939-955.
  • Handle: RePEc:eee:energy:v:25:y:2000:i:10:p:939-955
    DOI: 10.1016/S0360-5442(00)00035-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544200000359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(00)00035-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. San, J.Y. & Worek, W.M. & Lavan, Z., 1987. "Second-law analysis of a two-dimensional regenerator," Energy, Elsevier, vol. 12(6), pages 485-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    2. Kotcioglu, Isak & Caliskan, Sinan & Cansiz, Ahmet & Baskaya, Senol, 2010. "Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator," Energy, Elsevier, vol. 35(9), pages 3686-3695.
    3. Tugrul Ogulata, R., 2004. "Utilization of waste-heat recovery in textile drying," Applied Energy, Elsevier, vol. 79(1), pages 41-49, September.
    4. Wu, Shuang-Ying & Yuan, Xiao-Feng & Li, You-Rong & Xiao, Lan, 2007. "Exergy transfer effectiveness on heat exchanger for finite pressure drop," Energy, Elsevier, vol. 32(11), pages 2110-2120.
    5. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    6. R. Adamovský & D. Adamovský & D. Herák, 2004. "Exergy of heat flows of the air-to-air plate heat exchanger," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 50(4), pages 130-135.
    7. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
    8. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    9. Heidar Sadeghzadeh & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm," Sustainability, MDPI, vol. 7(9), pages 1-17, August.
    10. Liang, Cai-Hang & Zhang, Li-Zhi & Pei, Li-Xia, 2010. "Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery," Energy, Elsevier, vol. 35(9), pages 3891-3901.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:25:y:2000:i:10:p:939-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.