IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031832.html
   My bibliography  Save this article

Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator

Author

Listed:
  • Yusuf, Aminu
  • Ballikaya, Sedat

Abstract

High cost, and scarcity of high-performance thermoelectric materials are some of the reasons that hinder large scale production of thermoelectric devices. In view thereof, a novel thermoelectric module is proposed. The new module is composed of four thermoelectric materials; two of which are costly but show high-performance at low temperature, while the other two are cheap but show low-performance at room temperature. This combination is aimed at reducing the dependency on the costly and scarce thermoelectric materials, at the same time ensuring good output performance. The thermoelectric and thermomechanical performances of the proposed module are investigated. The analysis revealed that the percentage cost reduction is higher than the percentage reduction in the output power of the module. Furthermore, over the range of the temperature considered in this study, the maximum von Mises stress in the module is lower than the yield stress of the materials. Likewise, cost-power ratio of 0.952 $/W is achieved.

Suggested Citation

  • Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031832
    DOI: 10.1016/j.energy.2021.122934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    2. Khaled Teffah & Youtong Zhang & Xiao-long Mou, 2018. "Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module," Energies, MDPI, vol. 11(3), pages 1-11, March.
    3. LeBlanc, Saniya & Yee, Shannon K. & Scullin, Matthew L. & Dames, Chris & Goodson, Kenneth E., 2014. "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 313-327.
    4. Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
    5. Fan, Shifa & Gao, Yuanwen, 2019. "Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery," Energy, Elsevier, vol. 183(C), pages 35-47.
    6. Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
    7. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    8. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    9. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    10. Ouyang, Zhongliang & Li, Dawen, 2018. "Design of segmented high-performance thermoelectric generators with cost in consideration," Applied Energy, Elsevier, vol. 221(C), pages 112-121.
    11. Hwang, Junphil & Kim, Hoon & Wijethunge, Dimuthu & Nandihalli, Nagaraj & Eom, Yoomin & Park, Hwanjoo & Kim, Jungwon & Kim, Woochul, 2017. "More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials," Applied Energy, Elsevier, vol. 205(C), pages 1459-1466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    2. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    2. Aljaghtham, Mutabe & Celik, Emrah, 2022. "Design of cascade thermoelectric generation systems with improved thermal reliability," Energy, Elsevier, vol. 243(C).
    3. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    4. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    5. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    6. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    7. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
    8. Maduabuchi, Chika & Eneh, Chibuoke & Alrobaian, Abdulrahman Abdullah & Alkhedher, Mohammad, 2023. "Deep neural networks for quick and precise geometry optimization of segmented thermoelectric generators," Energy, Elsevier, vol. 263(PC).
    9. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    11. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    12. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    13. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.
    14. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    15. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    16. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ren, Fengsheng & Yang, Yue & Ma, Bijian & Zhu, Yonggang, 2023. "Performance optimization for a novel two-stage thermoelectric generator with different PCMs embedding modes," Energy, Elsevier, vol. 281(C).
    17. Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
    18. Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
    19. Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    20. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.