IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221025330.html
   My bibliography  Save this article

Theoretical analysis of shape factor on performance of annular thermoelectric generators under different thermal boundary conditions

Author

Listed:
  • Zhu, WenChao
  • Weng, Zebin
  • Li, Yang
  • Zhang, Leiqi
  • Zhao, Bo
  • Xie, Changjun
  • Shi, Ying
  • Huang, Liang
  • Yan, Yonggao

Abstract

The annular thermoelectric generator (ATEG) has received growing research interest due to its improved energy conversion efficiency compared to conventional flat-plate thermoelectric generators (FTEG). In this study, considering the influence of ceramic substrate and copper contact layer, a numerical model of the annular thermoelectric module (ATEM) was established for the studies of the influence of geometrical parameters on output performance under three typical application scenarios with different boundary conditions. It is found that when the heat flow on hot side is constant, the shape factors of the optimal performance are slightly different either if the convection coefficient or the temperature is considered constant on cold side. In both cases, the output power and the conversion efficiency decrease with the increase of the thickness of the thermocouple, and increase with the increase of the angle, length, and number of the thermocouples. When the temperatures are considered constant on both sides of the thermocouples, a conflicting relationship between the optimal output power and the efficiency exists. In this case, to obtain the best ATEG performance, multi-optimization problem is formulated and solved by the non-dominant sorting genetic algorithm with elite strategy method (NSGA-II).

Suggested Citation

  • Zhu, WenChao & Weng, Zebin & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Shi, Ying & Huang, Liang & Yan, Yonggao, 2022. "Theoretical analysis of shape factor on performance of annular thermoelectric generators under different thermal boundary conditions," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025330
    DOI: 10.1016/j.energy.2021.122285
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaolong & Xie, Changjun & Quan, Shuhai & Huang, Liang & Fang, Wei, 2018. "Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system," Applied Energy, Elsevier, vol. 231(C), pages 887-900.
    2. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    3. Yang, Yurong & Wang, Shixue & Zhu, Yu, 2020. "Evaluation method for assessing heat transfer enhancement effect on performance improvement of thermoelectric generator systems," Applied Energy, Elsevier, vol. 263(C).
    4. Xiao, Jinsheng & Yang, Tianqi & Li, Peng & Zhai, Pengcheng & Zhang, Qingjie, 2012. "Thermal design and management for performance optimization of solar thermoelectric generator," Applied Energy, Elsevier, vol. 93(C), pages 33-38.
    5. Meng, Jing-Hui & Zhang, Xin-Xin & Wang, Xiao-Dong, 2014. "Multi-objective and multi-parameter optimization of a thermoelectric generator module," Energy, Elsevier, vol. 71(C), pages 367-376.
    6. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    7. Vostrikov, Sergei & Somov, Andrey & Gotovtsev, Pavel, 2019. "Low temperature gradient thermoelectric generator: Modelling and experimental verification," Applied Energy, Elsevier, vol. 255(C).
    8. Liu, Hai-Bo & Wang, Shuo-Lin & Yang, Yan-Ru & Chen, Wei-Hsin & Wang, Xiao-Dong, 2020. "Theoretical analysis of performance of variable cross-section thermoelectric generators: Effects of shape factor and thermal boundary conditions," Energy, Elsevier, vol. 201(C).
    9. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).
    2. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    4. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    5. Junpeng Liu & Yajing Sun & Gang Chen & Pengcheng Zhai, 2023. "Performance Analysis of Variable Cross-Section TEGs under Constant Heat Flux Conditions," Energies, MDPI, vol. 16(11), pages 1-16, June.
    6. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    2. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    3. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    4. He, Wei & Guo, Rui & Takasu, Hiroki & Kato, Yukitaka & Wang, Shixue, 2019. "Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems," Energy, Elsevier, vol. 175(C), pages 1153-1163.
    5. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    6. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    7. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    8. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    9. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    10. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    11. Liu, Hai-Bo & Wang, Shuo-Lin & Yang, Yan-Ru & Chen, Wei-Hsin & Wang, Xiao-Dong, 2020. "Theoretical analysis of performance of variable cross-section thermoelectric generators: Effects of shape factor and thermal boundary conditions," Energy, Elsevier, vol. 201(C).
    12. Ouyang, Zhongliang & Li, Dawen, 2018. "Design of segmented high-performance thermoelectric generators with cost in consideration," Applied Energy, Elsevier, vol. 221(C), pages 112-121.
    13. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    14. Arora, Ranjana & Kaushik, S.C. & Arora, Rajesh, 2015. "Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II," Energy, Elsevier, vol. 91(C), pages 242-254.
    15. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    16. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    17. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    18. Chen, Wei-Hsin & Lin, Yen-Kuan & Luo, Ding & Jin, Liwen & Hoang, Anh Tuan & Saw, Lip Huat & Nižetić, Sandro, 2023. "Effects of material doping on the performance of thermoelectric generator with/without equal segments," Applied Energy, Elsevier, vol. 350(C).
    19. Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
    20. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.