IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221016248.html
   My bibliography  Save this article

The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy

Author

Listed:
  • Xin, Yue
  • Zhang, Yindi
  • Xue, Peng
  • Wang, Ke
  • Adu, Emmanuel
  • Tontiwachwuthikul, Paitoon

Abstract

Compression and liquefaction of carbon dioxide are important parts of the carbon capture, utilization, and storage (CCUS) process. A CCUS project with an actual workload of 1 million tons/year of China is simulated and analyzed in this paper. A new process scheme of compressed liquefaction of CO2 in the CCUS project by using liquid natural gas (LNG) cold energy through CO2 pipeline transportation is proposed to save energy and reduce consumption. The CO2 hydrate prediction models were compared. Based on the thermodynamic path of the CO2 compression liquefaction process, the energy consumption of four process models is compared. The relevant factors, which affect the economy of the new process are investigated, and the technical and economic model is optimized for the new technology scheme of CO2 pipeline. The total cost of the new process of economic is evaluated and the effective quantitative distances for energy saving are obtained. The results show that when the moisture content of CO2 is below 500ppmMol, the new technology will not cause hydrate blockage. The economic viability of the new process (Three stage compression with compressor + liquefaction by using cold energy + pump) is significantly affected by the distance between the LNG receiving station and thermal power plant, and the total cost will be reduced by 30%, 23%, and 8% at a distance of 25, 50 and 100 km, respectively. The distance between LNG receiving station and gas power plant is 125 km, the application of new technology can bring about energy saving and consumption reduction. Through the sensitivity analysis based on NPV and IRR of the new process, the results are economically feasible, and CO2 profit is the most sensitive factor.

Suggested Citation

  • Xin, Yue & Zhang, Yindi & Xue, Peng & Wang, Ke & Adu, Emmanuel & Tontiwachwuthikul, Paitoon, 2021. "The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016248
    DOI: 10.1016/j.energy.2021.121376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    2. Zhang, Na & Lior, Noam & Liu, Meng & Han, Wei, 2010. "COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization," Energy, Elsevier, vol. 35(2), pages 1200-1210.
    3. Qi Li & Wenbin Fei & Xuehao Liu & Xiaochen Wei & Miao Jing & Xiaochun Li, 2014. "Challenging combination of CO 2 geological storage and coal mining in the Ordos basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(4), pages 452-467, August.
    4. Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
    5. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    6. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianlei Chen & Manqi Wang & Bin Wang & Huadong Hao & Haolei Shi & Zenan Wu & Junxue Chen & Limei Gai & Hengcong Tao & Baikang Zhu & Bohong Wang, 2023. "Energy Consumption Reduction and Sustainable Development for Oil & Gas Transport and Storage Engineering," Energies, MDPI, vol. 16(4), pages 1-16, February.
    2. Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).
    3. Yue Xin & Ke Wang & Yindi Zhang & Fanjin Zeng & Xiang He & Shadrack Adjei Takyi & Paitoon Tontiwachwuthikul, 2021. "Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers," Energies, MDPI, vol. 14(21), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    2. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    3. Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Zheng, Shuxing, 2020. "Analysis on full CO2 capture schemes in NG/O2 combustion gas and steam mixture cycle (GSMC)," Energy, Elsevier, vol. 191(C).
    4. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    5. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization," Energy, Elsevier, vol. 129(C), pages 171-184.
    6. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    7. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    9. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    10. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    11. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    12. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink," Energy, Elsevier, vol. 50(C), pages 513-522.
    14. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    15. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    16. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    17. Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
    18. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    19. Yusuf, Noor & Almomani, Fares, 2023. "Recent advances in biogas purifying technologies: Process design and economic considerations," Energy, Elsevier, vol. 265(C).
    20. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.