IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006915.html
   My bibliography  Save this article

Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar

Author

Listed:
  • Li, Chao
  • Sun, Yifan
  • Dong, Dehua
  • Gao, Guanggang
  • Zhang, Shu
  • Wang, Yi
  • Xiang, Jun
  • Hu, Song
  • Mortaza, Gholizadeh
  • Hu, Xun

Abstract

The major compounds of cellulose and lignin in biomass could have varied contributions on distribution and properties of pyrolysis products by generating the volatiles of different structures via pyrolysis. In this paper, the co-pyrolysis of cellulose or lignin with sawdust were investigated, aiming to probe the impacts of volatiles from lignin or cellulose pyrolysis on evolution of products. The results indicated that the interactions between volatiles from cellulose or lignin with that of sawdust did exist. The co-pyrolysis of sawdust with cellulose tended to promote the bio-oil production, while the co-pyrolysis with lignin enhanced the formation of biochar. The cross-polymerization of light species (i.e. radicals) from cellulose pyrolysis with heavier ones from lignin pyrolysis transformed the precursors of gases into condensable liquid, bio-oil. In comparison, the interaction of heavy species between lignin and those from sawdust produced more carbonaceous solid, biochar. Additionally, the biochar from co-pyrolysis of sawdust with cellulose possessed more oxygen-containing functionalities (i.e. CO), higher oxygen content, while lower thermal stability, while that from co-pyrolysis with lignin was opposite. The in situ Diffuse Reflection Infrared Fourier Transform Spectra (DRIFTS) analysis suggested that the volatiles from cellulose reacted with that from sawdust formed more aliphatic structures.

Suggested Citation

  • Li, Chao & Sun, Yifan & Dong, Dehua & Gao, Guanggang & Zhang, Shu & Wang, Yi & Xiang, Jun & Hu, Song & Mortaza, Gholizadeh & Hu, Xun, 2021. "Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006915
    DOI: 10.1016/j.energy.2021.120442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    2. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    3. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    5. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
    2. Li, Chao & Sun, Yifan & Li, Qingyang & Zhang, Lijun & Zhang, Shu & Wang, Huaisheng & Hu, Guangzhi & Hu, Xun, 2022. "Effects of volatiles on properties of char during sequential pyrolysis of PET and cellulose," Renewable Energy, Elsevier, vol. 189(C), pages 139-151.
    3. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    4. Ma, Jiao & Kong, Wenwen & Di, Weiqiang & Zhang, Zhikun & Wang, Zhuozhi & Feng, Shuo & Shen, Boxiong & Mu, Lan, 2022. "Synergistic effect of bulking agents and biodegradation on the pyrolysis of biodried products derived from municipal organic wastes: Product distribution and biochar physicochemical characteristics," Energy, Elsevier, vol. 248(C).
    5. Ni, Zhanshi & Bi, Haobo & Jiang, Chunlong & Sun, Hao & Zhou, Wenliang & Qiu, Zhicong & He, Liqun & Lin, Qizhao, 2022. "Research on the co-pyrolysis of coal slime and lignin based on the combination of TG-FTIR, artificial neural network, and principal component analysis," Energy, Elsevier, vol. 261(PA).
    6. Zheng, Kaiyue & Han, Hengda & Hu, Song & Ren, Qiangqiang & Su, Sheng & Wang, Yi & Jiang, Long & Xu, Jun & Li, Hanjian & Tong, Yuxing & Xiang, Jun, 2023. "Upgrading biomass waste to bio-coking coal by pressurized torrefaction: Synergistic effect between corncob and lignin," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    3. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
    6. Kung, Chih-Chun & Fei, Chengcheng J. & McCarl, Bruce A. & Fan, Xinxin, 2022. "A review of biopower and mitigation potential of competing pyrolysis methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Ashfaq Ahmed & Muhammad S. Abu Bakar & Abdul Razzaq & Syarif Hidayat & Farrukh Jamil & Muhammad Nadeem Amin & Rahayu S. Sukri & Noor S. Shah & Young-Kwon Park, 2021. "Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion," Sustainability, MDPI, vol. 13(9), pages 1-13, May.
    11. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    13. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    14. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    15. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    17. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    18. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    19. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.