IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220324488.html
   My bibliography  Save this article

Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions

Author

Listed:
  • Tian, Hong
  • Hu, Qingsong
  • Wang, Jiawei
  • Chen, Donglin
  • Yang, Yang
  • Bridgwater, Anthony V.

Abstract

The CO2 gasification is an emerging process that can improve the quality of syngas and enhance the CO2 circular utilisation. This paper presents a comprehensive analysis on the CO2 gasification of Miscanthus-derived biochar produced at varying processing conditions. The gasification behaviour, kinetics and biochar reactivity were investigated and the correlations to the biochar preparation conditions and their microstructure were developed. Results showed that the preparation and gasification reaction conditions had major impact on the biochar reactivity. The order of significance that affected the biochar reactivity was gasification temperature, biochar preparation temperature and processing atmosphere. Increasing heating rate could enhance the biochar reactivity, while increasing preparation temperature could reduce the reactivity in N2 and He atmosphere. At 600 and 1000 °C, He atmosphere resulted in the most activity biochar, followed by N2 and CO2. At 800 °C, CO2 atmosphere gave the highest reactivity, followed by He and N2. The Activation Energy (E) of gasification reaction calculated by the Hybrid Model (HM) was mainly in the range of 78.09–212.46 kJ mol−1. The E decreased with the increase of carbon conversion rate. A great kinetic compensation effect between E and A was identified during the CO2 gasification process.

Suggested Citation

  • Tian, Hong & Hu, Qingsong & Wang, Jiawei & Chen, Donglin & Yang, Yang & Bridgwater, Anthony V., 2021. "Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324488
    DOI: 10.1016/j.energy.2020.119341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    2. Zhai, Ming & Liu, Jianing & Wang, Ze & Guo, Li & Wang, Xinyu & Zhang, Yu & Dong, Peng & Sun, Jiawei, 2017. "Gasification characteristics of sawdust char at a high-temperature steam atmosphere," Energy, Elsevier, vol. 128(C), pages 509-518.
    3. Wang, Guangwei & Zhang, Jianliang & Chang, Weiwei & Li, Rongpeng & Li, Yanjiang & Wang, Chuan, 2018. "Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature," Energy, Elsevier, vol. 147(C), pages 25-35.
    4. Vincent, Shubha Shalini & Mahinpey, Nader & Aqsha, Aqsha, 2014. "Mass transfer studies during CO2 gasification of torrefied and pyrolyzed chars," Energy, Elsevier, vol. 67(C), pages 319-327.
    5. Lin, Leteng & Strand, Michael, 2013. "Investigation of the intrinsic CO2 gasification kinetics of biomass char at medium to high temperatures," Applied Energy, Elsevier, vol. 109(C), pages 220-228.
    6. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    7. Sonibare, Oluwadayo O. & Haeger, Tobias & Foley, Stephen F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy," Energy, Elsevier, vol. 35(12), pages 5347-5353.
    8. Fatehi, Hesameddin & Bai, Xue-Song, 2017. "Structural evolution of biomass char and its effect on the gasification rate," Applied Energy, Elsevier, vol. 185(P2), pages 998-1006.
    9. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    10. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    11. Kibria, M.A. & Sripada, Pramod & Bhattacharya, Sankar, 2020. "Steady state kinetic model for entrained flow CO2 gasification of biomass at high temperature," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Hong & Chen, Lei & Huang, Zhangjun & Cheng, Shan & Yang, Yang, 2022. "Increasing the bio-aromatics yield in the biomass pyrolysis oils by the integration of torrefaction deoxygenation pretreatment and catalytic fast pyrolysis with a dual catalyst system," Renewable Energy, Elsevier, vol. 187(C), pages 561-571.
    2. Katerina Klemencova & Barbora Grycova & Pavel Lestinsky, 2022. "Influence of Miscanthus Rhizome Pyrolysis Operating Conditions on Products Properties," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    3. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    4. Wang, Yu & Ge, Zhiwei & Shang, Fei & Zhou, Chenchen & Guo, Shenghui & Ren, Changyifan, 2023. "Kinetic analysis of CO2 gasification of corn straw," Renewable Energy, Elsevier, vol. 203(C), pages 219-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Hong & Ma, Xiuyun & Jiang, Miao & Yan, Peifang & Zhang, Z.Conrad, 2021. "Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas," Energy, Elsevier, vol. 221(C).
    2. Kou, Mingyin & Zuo, Haibin & Ning, Xiaojun & Wang, Guangwei & Hong, Zhibin & Xu, Haifa & Wu, Shengli, 2019. "Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal," Energy, Elsevier, vol. 188(C).
    3. Gao, Xiaoyan & Zhang, Yaning & Xu, Fei & Yin, Zhaoqin & Wang, Yingying & Bao, Fubing & Li, Bingxi, 2019. "Experimental and kinetic studies on the intrinsic reactivities of rice husk char," Renewable Energy, Elsevier, vol. 135(C), pages 608-616.
    4. Liang, Wang & Ning, Xiaojun & Wang, Guangwei & Zhang, Jianliang & Li, Rongpeng & Chang, Weiwei & Wang, Chuan, 2021. "Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke," Renewable Energy, Elsevier, vol. 163(C), pages 331-341.
    5. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    6. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    7. Liang, Wang & Jiang, Chunhe & Wang, Guangwei & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Xu, Runsheng & Wang, Peng & Ye, Lian & Li, Jinhua & Wang, Chuan, 2022. "Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite," Renewable Energy, Elsevier, vol. 194(C), pages 1119-1130.
    8. Yu, Junqin & Xia, Weidong & Areeprasert, Chinnathan & Ding, Lu & Umeki, Kentaro & Yu, Guangsuo, 2022. "Catalytic effects of inherent AAEM on char gasification: A mechanism study using in-situ Raman," Energy, Elsevier, vol. 238(PC).
    9. Saiman Ding & Efthymios Kantarelis & Klas Engvall, 2020. "Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures," Energies, MDPI, vol. 13(19), pages 1-19, September.
    10. Baath, Yuvraj Singh & Nikrityuk, Petr A. & Gupta, Rajender, 2022. "Experimental and numerical verifications of biochar gasification kinetics using TGA," Renewable Energy, Elsevier, vol. 185(C), pages 717-733.
    11. Shengguo Zhao & Liang Ding & Yun Ruan & Bin Bai & Zegang Qiu & Zhiqin Li, 2021. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char," Energies, MDPI, vol. 14(21), pages 1-23, November.
    12. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.
    13. Lopez, Gartzen & Alvarez, Jon & Amutio, Maider & Arregi, Aitor & Bilbao, Javier & Olazar, Martin, 2016. "Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor," Energy, Elsevier, vol. 107(C), pages 493-501.
    14. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    15. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    16. Zhang, Zihang & Yi, Baojun & Sun, Zhengshuai & Zhang, Qi & Feng, He & Hu, Hongyun & Huang, Xiangguo & Zhao, Chunqing, 2021. "Reaction process and characteristics for coal char gasification under changed CO2/H2O atmosphere in various reaction stages," Energy, Elsevier, vol. 229(C).
    17. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    18. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    19. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    20. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.