IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220319976.html
   My bibliography  Save this article

A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics

Author

Listed:
  • Wei, Jiangshan
  • Xue, Yingxian
  • Yang, Mingyang
  • Deng, Kangyao
  • Wang, Cuicui
  • Wu, Xintao

Abstract

Twin-entry radial turbine has evident advantages on energy recovery of internal combustion engine because of better utilization of exhaust pulse energy. One-dimensional performance prediction plays an important role in automobile industry because of the cost-effective feature. However, as twin-entry turbine is confronted by out-of-phase pulses, to capture the flow distortion by twin-entry turbine model is challenging, especially under partial admission conditions. This paper establishes a reduced-order parallel-rotor model for performance prediction of twin-entry nozzleless radial turbine based on internal flow characteristics. Firstly, twin-entry turbine experiment and 3D simulation are applied to analyze the different flow features under partial admission conditions. The flow distortions in the spanwise and circumferential directions are both demonstrated. Based on these flow characteristics, a reduced-order twin-entry turbine model with parallel rotor passages is established for predicting the rotor at distorted flow field. Finally, the model is carefully validated against the results of CFD. The results show that satisfied consistency can be obtained and the maximum discrepancy of turbine performance is 3.8% and the performance difference and flow distortion under partial admissions can be captured, thus prove the credibility of the model. This investigation provides a reliable methodology for performance prediction and behavior analysis of twin-entry turbine.

Suggested Citation

  • Wei, Jiangshan & Xue, Yingxian & Yang, Mingyang & Deng, Kangyao & Wang, Cuicui & Wu, Xintao, 2021. "A reduced-order model of twin-entry nozzleless radial turbine based on flow characteristics," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319976
    DOI: 10.1016/j.energy.2020.118890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serrano, José Ramón & Navarro, Roberto & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2018. "Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio," Energy, Elsevier, vol. 147(C), pages 1299-1310.
    2. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    3. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.
    4. Xue, Yingxian & Yang, Mingyang & Martinez-Botas, Ricardo F. & Romagnoli, Alessandro & Deng, Kangyao, 2019. "Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions," Energy, Elsevier, vol. 166(C), pages 775-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vittorio Usai & Silvia Marelli, 2021. "Steady State Experimental Characterization of a Twin Entry Turbine under Different Admission Conditions," Energies, MDPI, vol. 14(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Galindo & Andrés Tiseira & Roberto Navarro & Lukas Benjamin Inhestern & Juan David Echavarría, 2022. "Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow," Energies, MDPI, vol. 15(24), pages 1-30, December.
    2. Xue, Yingxian & Yang, Mingyang & Martinez-Botas, Ricardo F. & Romagnoli, Alessandro & Deng, Kangyao, 2019. "Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions," Energy, Elsevier, vol. 166(C), pages 775-788.
    3. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    4. Liu, Zheng & Copeland, Colin, 2018. "New method for mapping radial turbines exposed to pulsating flows," Energy, Elsevier, vol. 162(C), pages 1205-1222.
    5. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    6. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    7. Xue, Yingxian & Yang, Mingyang & Pan, Lei & Deng, Kangyao & Wu, Xintao & Wang, Cuicui, 2021. "Gasdynamic behaviours of a radial turbine with pulsating incoming flow," Energy, Elsevier, vol. 218(C).
    8. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    9. Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    10. Wei, Jiangshan & Xue, Yingxian & Deng, Kangyao & Yang, Mingyang & Liu, Ying, 2020. "A direct comparison of unsteady influence of turbine with twin-entry and single-entry scroll on performance of internal combustion engine," Energy, Elsevier, vol. 212(C).
    11. Ketata, Ahmed & Driss, Zied & Abid, Mohamed Salah, 2020. "Impact of blade number on performance, loss and flow characteristics of one mixed flow turbine," Energy, Elsevier, vol. 203(C).
    12. Tüchler, Stefan & Chen, Zhihang & Copeland, Colin D., 2018. "Multipoint shape optimisation of an automotive radial compressor using a coupled computational fluid dynamics and genetic algorithm approach," Energy, Elsevier, vol. 165(PA), pages 543-561.
    13. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    14. Payri, Francisco & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2014. "External heat losses in small turbochargers: Model and experiments," Energy, Elsevier, vol. 71(C), pages 534-546.
    15. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    16. Khalil, Khalil M. & Mahmoud, S. & Al- Dadah, R.K., 2020. "Experimental and numerical investigation of blade height effects on micro-scale axial turbines performance using compressed air open cycle," Energy, Elsevier, vol. 211(C).
    17. Dariusz Kozak & Paweł Mazuro, 2023. "Numerical Analysis of Two-Stage Turbine System for Multicylinder Engine under Pulse Flow Conditions with High Pressure-Ratio Turbine Rotor," Energies, MDPI, vol. 16(2), pages 1-46, January.
    18. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    19. Luján, José Manuel & Serrano, José Ramon & Piqueras, Pedro & Diesel, Bárbara, 2019. "Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature," Applied Energy, Elsevier, vol. 240(C), pages 409-423.
    20. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.