IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics0360544220319241.html
   My bibliography  Save this article

The importance of long-term well management in geothermal power systems using fuzzy control: A Western Anatolia (Turkey) case study

Author

Listed:
  • Tut Haklıdır, Füsun S.

Abstract

Effective geothermal power generation depends on two main elements: geothermal reservoir management and maintenance of the power plant. Reservoir management consists of both the fluid production and reinjection of brine to the underground. The management of wells is important to ensure the sustainability of the reservoir. Thus, the flow rate control systems are essential to protect geothermal reservoirs under long-term power production. The second issue is the daily change in electricity prices and the load change process is complex because geothermal well controls are not flexible operations. The well management thus requires control approaches, and fuzzy control can be one effective solution. In this study, a fuzzy control system has been developed to control flow rates of the wells in Kızıldere geothermal field and its performance has been compared with the real data taken from the Kızıldere Power Plant. The results of comparison show that the fuzzy controllers achieved the target energy production in 2 h instead of 5 h, compared to the real data. Based on the real data, the reinjection was only able to stabilize at the end of the fourth hour and the process took only 2 h when using the fuzzy controllers.

Suggested Citation

  • Tut Haklıdır, Füsun S., 2020. "The importance of long-term well management in geothermal power systems using fuzzy control: A Western Anatolia (Turkey) case study," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319241
    DOI: 10.1016/j.energy.2020.118817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, Behnam & Khalajmasoumi, Masoumeh, 2015. "A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 818-831.
    2. Ciriaco, Anthony E. & Zarrouk, Sadiq J. & Zakeri, Golbon, 2020. "Geothermal resource and reserve assessment methodology: Overview, analysis and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering," Renewable Energy, Elsevier, vol. 106(C), pages 37-51.
    4. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    5. Clarke, Joshua & McLeskey, James T., 2015. "Multi-objective particle swarm optimization of binary geothermal power plants," Applied Energy, Elsevier, vol. 138(C), pages 302-314.
    6. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalilinasrabady, Saeid & Tanaka, Toshiaki & Itoi, Ryuichi & Goto, Hiroki, 2021. "Numerical simulation and production prediction assessment of Takigami geothermal reservoir," Energy, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    2. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    3. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    4. Moraga, J. & Duzgun, H.S. & Cavur, M. & Soydan, H., 2022. "The Geothermal Artificial Intelligence for geothermal exploration," Renewable Energy, Elsevier, vol. 192(C), pages 134-149.
    5. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    6. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    7. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    8. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    9. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    10. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    11. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    13. Huster, Wolfgang R. & Vaupel, Yannic & Mhamdi, Adel & Mitsos, Alexander, 2018. "Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck," Energy, Elsevier, vol. 151(C), pages 647-661.
    14. Stijepovic, Mirko Z. & Papadopoulos, Athanasios I. & Linke, Patrick & Grujic, Aleksandar S. & Seferlis, Panos, 2014. "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes," Energy, Elsevier, vol. 69(C), pages 285-298.
    15. Fechner, Dorothee & Kondek, Milena & Kölbel, Thomas & Kolb, Jochen, 2022. "CO2 handling in binary geothermal systems — A modelling approach for different CO2 contents, salinity, pressure and temperature conditions," Renewable Energy, Elsevier, vol. 201(P1), pages 780-791.
    16. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    17. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    18. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    19. Shafiullah, Md & Rahman, Syed Masiur & Mortoja, Md. Golam & Al-Ramadan, Baqer, 2016. "Role of spatial analysis technology in power system industry: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 584-595.
    20. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.