IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220317151.html
   My bibliography  Save this article

Effects of boron compounds on decomposition of chlorides to control clinkers under solid refuse fuel combustion conditions

Author

Listed:
  • Choi, Yujin
  • Jun, Hyunji
  • Shin, Jong Seon
  • Han, Keun-Hee
  • Bae, Dal Hee
  • Hwang, Byung Wook
  • Kim, Hong Jip
  • Shun, Dowon

Abstract

The chlorides of sodium and potassium and other mineral salts are often present in solid refuse fuel (SRF) in concentrations of at least 1–2%. These salts can generate clinker during combustion and cause serious operational problems, such as blocking of the gas passage, reduction in boiler operational efficiency, and corrosion of the heat exchanger tubes in the boiler. Although many solutions have been proposed to control clinker formation in boilers, herein we investigated the effects of boron compounds (boric acid and borax) on the decomposition of the mineral salts present in SRF to control the formation of fly ash. Using a laboratory-scale reactor, isothermal reactions between the boron compounds and the chlorides were performed at 900 °C for 10 h. HCl gas was released during the decomposition reactions, indicating that a chemical reaction had occurred on the surfaces of the boron compounds. Peaks related to sodium and potassium borates were observed in X-ray diffraction patterns, suggesting that these compounds had been formed during the reactions. Scanning electron microscopy images of the reaction products showed clusters of the mineral salts on the matrix of the borax particles, indicating that changes in the morphology owing to physical adsorption had also occurred during the reactions.

Suggested Citation

  • Choi, Yujin & Jun, Hyunji & Shin, Jong Seon & Han, Keun-Hee & Bae, Dal Hee & Hwang, Byung Wook & Kim, Hong Jip & Shun, Dowon, 2020. "Effects of boron compounds on decomposition of chlorides to control clinkers under solid refuse fuel combustion conditions," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317151
    DOI: 10.1016/j.energy.2020.118607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Feng & Liu, Jian & Chyang, Chien-Song & Hu, Chun-Hsuan & Tso, Jim, 2013. "Combustion behavior and pollutant emission characteristics of RDF (refuse derived fuel) and sawdust in a vortexing fluidized bed combustor," Energy, Elsevier, vol. 57(C), pages 421-426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    2. Li, Pin-Wei & Chyang, Chien-Song & Ni, Hung-Wen, 2018. "An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion," Energy, Elsevier, vol. 154(C), pages 319-327.
    3. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2017. "Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions," Energy, Elsevier, vol. 137(C), pages 1167-1174.
    4. Cao, Songshan & Duan, Feng & Zhang, Lihui & Chyang, ChienSong & Yang, ChihYun, 2017. "Application of response surface methodology to determine effects of operational conditions on in-bed combustion fraction in vortexing fluidized-bed combustor using different fuels," Energy, Elsevier, vol. 139(C), pages 862-870.
    5. Fang, Dong-dong & Chen, Jia & Zhang, Li-hui & Duan, Feng & Wang, Ping & Chyang, Chien-Song, 2017. "Experimental study on the shrinkage characteristics and devolatilization time of wood in a turbulent fluidized bed combustor using computed tomography," Energy, Elsevier, vol. 141(C), pages 348-357.
    6. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    7. Chen, Jia & Fang, Dongdong & Duan, Feng, 2018. "Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor," Applied Energy, Elsevier, vol. 218(C), pages 54-65.
    8. Zhang, Li-hui & Chyang, Chien-Song & Duan, Feng & Li, Pin-Wei & Chen, Sing-Yu, 2016. "Comparison of the thermal behaviors and pollutant emissions of pelletized bamboo combustion in a fluidized bed combustor at different secondary gas injection modes," Energy, Elsevier, vol. 116(P1), pages 306-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.