IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313360.html
   My bibliography  Save this article

Distributed energy-reserve Co-Optimization of electricity and natural gas systems with multi-type reserve resources

Author

Listed:
  • Wu, Gang
  • Xiang, Yue
  • Liu, Junyong
  • Shen, Xiaodong
  • Cheng, Shikun
  • Hong, Bowen
  • Jawad, Shafqat

Abstract

An energy-reserve co-optimization model for electricity and natural gas systems with multi-type reserve resources is proposed. Considering the reserve capacity provided by generating units is difficult to meet the large-scale regulation requirements caused by wind power, load demand forecast errors and unexpected contingencies, a reserve scheme with multi-type reserve resources including generating units, energy storage devices, and interruptible loads is designed. Besides, the transmission capability of reserve capacity in the electricity and gas networks when facing forecast errors and contingencies is considered in the proposed model. To protect information privacy of different energy systems, an improved alternating direction method of multipliers (ADMM) is adopted to solve the energy-reserve co-optimization model. The feasibility and effectiveness of the proposed model and method are verified on a modified IEEE 24-bus power system and 6-node natural gas systems.

Suggested Citation

  • Wu, Gang & Xiang, Yue & Liu, Junyong & Shen, Xiaodong & Cheng, Shikun & Hong, Bowen & Jawad, Shafqat, 2020. "Distributed energy-reserve Co-Optimization of electricity and natural gas systems with multi-type reserve resources," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313360
    DOI: 10.1016/j.energy.2020.118229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qadrdan, Meysam & Ameli, Hossein & Strbac, Goran & Jenkins, Nicholas, 2017. "Efficacy of options to address balancing challenges: Integrated gas and electricity perspectives," Applied Energy, Elsevier, vol. 190(C), pages 181-190.
    2. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    3. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Chen & Lei Gan & Sheeraz Iqbal & Marek Jasiński & Mohammed A. El-Meligy & Mohamed Sharaf & Samia G. Ali, 2023. "A Novel Evolving Framework for Energy Management in Combined Heat and Electricity Systems with Demand Response Programs," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    2. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    3. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    4. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    5. Yao, Haotian & Xiang, Yue & Liu, Junyong, 2022. "Exploring multiple investment strategies for non-utility-owned DGs: A decentralized risked-based approach," Applied Energy, Elsevier, vol. 326(C).
    6. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).
    7. Yan, Zhongzhen & Zhu, Xinyuan & Chang, Yiming & Wang, Xianglong & Ye, Zhiwei & Xu, Zhigang & Fars, Ashk, 2023. "Renewable energy effects on energy management based on demand response in microgrids environment," Renewable Energy, Elsevier, vol. 213(C), pages 205-217.
    8. Qian, Tong & Chen, Xingyu & Xin, Yanli & Tang, Wenhu & Wang, Lixiao, 2022. "Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks," Energy, Elsevier, vol. 239(PB).
    9. Zhang, Mingyang & Zhou, Ming & Wu, Zhaoyuan & Yang, Hongji & Li, Gengyin, 2022. "A ramp capability-aware scheduling strategy for integrated electricity-gas systems," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    2. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    4. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    6. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    7. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    8. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    9. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    10. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    11. Mohammad Hemmati & Mehdi Abapour & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Optimal Operation of Integrated Electrical and Natural Gas Networks with a Focus on Distributed Energy Hub Systems," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    12. Jie Xing & Peng Wu, 2021. "Optimal Planning of Electricity-Natural Gas Coupling System Considering Power to Gas Facilities," Energies, MDPI, vol. 14(12), pages 1-19, June.
    13. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    14. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    15. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    16. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    17. Shams, Mohammad H. & Shahabi, Majid & Khodayar, Mohammad E., 2018. "Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response," Energy, Elsevier, vol. 155(C), pages 326-338.
    18. Xiaoling Yuan & Can Cui & Guanxin Zhu & Hanqing Ma & Hao Cao, 2023. "Research on the Optimization of Energy–Carbon Co-Sharing Operation in Multiple Multi-Energy Microgrids Based on Nash Negotiation," Energies, MDPI, vol. 16(15), pages 1-20, July.
    19. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    20. Tan, Caixia & Wang, Jing & Geng, Shiping & Pu, Lei & Tan, Zhongfu, 2021. "Three-level market optimization model of virtual power plant with carbon capture equipment considering copula–CVaR theory," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.