IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220305995.html
   My bibliography  Save this article

First law thermodynamic analysis of the recuperated humphrey cycle for gas turbines with pressure gain combustion

Author

Listed:
  • Stathopoulos, Panagiotis
  • Rähse, Tim
  • Vinkeloe, Johann
  • Djordjevic, Neda

Abstract

The current work is an analysis of the recuperated Humphrey cycle. Three cycle topologies are studied with and without turbine cooling. The study focuses on the interconnection between combustor pressure gain and heat recuperation. It is an attempt to optimize the cycle topology and configuration to achieve the maximum possible cycle efficiency. It is found that the best option to use recuperation in the Humphrey cycle is to operate the combustor at stoichiometric conditions, without preheating the air fed to it. The combustion air comes effectively form a compressor air bleed. The remaining air is further compressed at the combustor outlet pressure and is fed to a plenum between combustor and turbine once it is preheated by the recuperator. This cycle configuration results in the best performance both in terms of efficiency and specific work. Specifically, an efficiency increase between 2 and 5% points is achieved. This work concludes with a feasibility study for shockless explosion combustion (SEC) for the Humphrey cycle configurations and topologies that achieve an efficiency advantage against the Joule cycle. It is found that realistic SEC combustor lengths and efficiency gains can be simultaneously achieved, albeit not at the cycle configurations with the best performance.

Suggested Citation

  • Stathopoulos, Panagiotis & Rähse, Tim & Vinkeloe, Johann & Djordjevic, Neda, 2020. "First law thermodynamic analysis of the recuperated humphrey cycle for gas turbines with pressure gain combustion," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305995
    DOI: 10.1016/j.energy.2020.117492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stathopoulos, Panagiotis & Rähse, Tim & Vinkeloe, Johann & Djordjevic, Neda, 2019. "Steam injected Humphrey cycle for gas turbines with pressure gain combustion," Energy, Elsevier, vol. 188(C).
    2. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    3. Panagiotis Stathopoulos, 2018. "Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines with Pressure Gain Combustion," Energies, MDPI, vol. 11(12), pages 1-21, December.
    4. Panagiotis Stathopoulos & Javier Fernàndez-Villa, 2018. "On the Potential of Power Generation from Thermoelectric Generators in Gas Turbine Combustors," Energies, MDPI, vol. 11(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stathopoulos, Panagiotis & Rähse, Tim & Vinkeloe, Johann & Djordjevic, Neda, 2019. "Steam injected Humphrey cycle for gas turbines with pressure gain combustion," Energy, Elsevier, vol. 188(C).
    2. Simeon Dybe & Michael Bartlett & Jens Pålsson & Panagiotis Stathopoulos, 2021. "TopCycle: A Novel High Performance and Fuel Flexible Gas Turbine Cycle," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    3. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    4. Salvatore Carusotto & Prashant Goel & Mirko Baratta & Daniela Anna Misul & Simone Salvadori & Francesco Cardile & Luca Forno & Marco Toppino & Massimo Valsania, 2022. "Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications," Energies, MDPI, vol. 15(11), pages 1-20, June.
    5. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    6. Ali, Usman & Font-Palma, Carolina & Nikpey Somehsaraei, Homam & Mansouri Majoumerd, Mohammad & Akram, Muhammad & Finney, Karen N. & Best, Thom & Mohd Said, Nassya B. & Assadi, Mohsen & Pourkashanian, , 2017. "Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture," Energy, Elsevier, vol. 126(C), pages 475-487.
    7. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    8. Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
    9. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    10. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Sandip Dutta & Inderjot Kaur & Prashant Singh, 2022. "Review of Film Cooling in Gas Turbines with an Emphasis on Additive Manufacturing-Based Design Evolutions," Energies, MDPI, vol. 15(19), pages 1-35, September.
    12. Wang, Shukun & Liu, Zuming & Liu, Chao & Wang, Xiaonan, 2022. "Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems," Energy, Elsevier, vol. 258(C).
    13. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).
    14. Montero Carrero, Marina & De Paepe, Ward & Bram, Svend & Musin, Frédéric & Parente, Alessandro & Contino, Francesco, 2016. "Humidified micro gas turbines for domestic users: An economic and primary energy savings analysis," Energy, Elsevier, vol. 117(P2), pages 429-438.
    15. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    17. De Paepe, Ward & Pappa, Alessio & Montero Carrero, Marina & Bricteux, Laurent & Contino, Francesco, 2020. "Reducing waste heat to the minimum: Thermodynamic assessment of the M-power cycle concept applied to micro Gas Turbines," Applied Energy, Elsevier, vol. 279(C).
    18. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    19. Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
    20. Panagiotis Stathopoulos, 2018. "Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines with Pressure Gain Combustion," Energies, MDPI, vol. 11(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.