IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324995.html
   My bibliography  Save this article

Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing

Author

Listed:
  • Ekici, Selcuk

Abstract

In this study, the route performance aspects of B707-JT3D pairing are comprehensively reviewed. A flight route consisting of nine flight operations of the B707-JT3D pairing is defined. The defined flight route was designed to be equivalent to the route a real commercial aircraft is currently exposed to. Parametric cycles were prepared via GasTurb12 software to obtain each flight profile data on the route. The evaluation of the parametric cycle data was carried out by thermodynamic analysis and the performance map of the B707-JT3D pairing is presented. The performance map consists of pressure, temperature, air/fuel mass flow rates, throttle settings, exergy rates, entropy generation rates, exergy efficiency and the exergy destruction function. Ultimately, parameters obtained from the analysis are expected to help understand the linkage between engine selection for commercial aircraft and green flight paths and, therefore, make aircraft-engine pairing more environmentally benign and greener.

Suggested Citation

  • Ekici, Selcuk, 2020. "Investigating routes performance of flight profile generated based on the off-design point: Elaboration of commercial aircraft-engine pairing," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324995
    DOI: 10.1016/j.energy.2019.116804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    2. Şöhret, Yasin & Dinç, Ali & Karakoç, T. Hikmet, 2015. "Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission," Energy, Elsevier, vol. 93(P1), pages 716-729.
    3. Tona, Cesare & Raviolo, Paolo Antonio & Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio, 2010. "Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight," Energy, Elsevier, vol. 35(2), pages 952-959.
    4. Hassan, H.Z., 2013. "Evaluation of the local exergy destruction in the intake and fan of a turbofan engine," Energy, Elsevier, vol. 63(C), pages 245-251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    2. Song, Jie & Wang, Yong & Ji, Chuang & Zhang, Haibo, 2024. "Real-time optimization control of variable rotor speed based on Helicopter/ turboshaft engine on-board composite system," Energy, Elsevier, vol. 301(C).
    3. Warimani, Mahammadsalman & Azami, Muhammad Hanafi & Khan, Sher Afghan & Ismail, Ahmad Faris & Saharin, Sanisah & Ariffin, Ahmad Kamal, 2021. "Internal flow dynamics and performance of pulse detonation engine with alternative fuels," Energy, Elsevier, vol. 237(C).
    4. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Performance and energy analysis of turboprop engine for air freighter aircraft with the aid of multiple regression," Energy, Elsevier, vol. 283(C).
    5. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    6. Ekici, Selcuk & Ayar, Murat & Orhan, Ilkay & Karakoc, Tahir Hikmet, 2024. "Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft," Energy, Elsevier, vol. 295(C).
    7. Ekici, Selcuk & Ayar, Murat & Hikmet Karakoc, T., 2023. "Fuel-saving and emission accounting: An airliner case study for green engine selection," Energy, Elsevier, vol. 282(C).
    8. Cai, Changpeng & Chen, Haoying & Fang, Juan & Zheng, Qiangang & Chen, Cheng & Zhang, Haibo, 2023. "Thermodynamic analysis of a novel precooled supersonic turbine engine based on aircraft/engine integrated optimal design," Energy, Elsevier, vol. 280(C).
    9. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    10. Ekici, Filiz & Orhan, Gamze & Gümüş, Öner & Bahce, Abdullah Burhan, 2022. "A policy on the externality problem and solution suggestions in air transportation: The environment and sustainability," Energy, Elsevier, vol. 258(C).
    11. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekici, Selcuk, 2020. "Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases," Energy, Elsevier, vol. 202(C).
    2. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    3. Syamimi Saadon & Nur Athirah Mohd Nasir, 2020. "Performance and Sustainability Analysis of an Organic Rankine Cycle System in Subcritical and Supercritical Conditions for Waste Heat Recovery," Energies, MDPI, vol. 13(12), pages 1-24, June.
    4. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    5. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    6. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    7. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).
    8. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    9. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    10. Turan, Onder, 2022. "Exergo-economic analysis of a CFM56-7B turbofan engine," Energy, Elsevier, vol. 259(C).
    11. Aygun, Hakan & Kirmizi, Mehmet & Kilic, Ulas & Turan, Onder, 2023. "Multi-objective optimization of a small turbojet engine energetic performance," Energy, Elsevier, vol. 271(C).
    12. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    13. Yurdusevimli Metin, Ece & Aygün, Hakan, 2019. "Energy and power aspects of an experimental target drone engine at non-linear controller loads," Energy, Elsevier, vol. 185(C), pages 981-993.
    14. Sogut, M. Ziya, 2020. "Assessment of small scale turbojet engine considering environmental and thermodynamics performance for flight processes," Energy, Elsevier, vol. 200(C).
    15. Şöhret, Yasin & Gürbüz, Habib & Akçay, İsmail Hakkı, 2019. "Energy and exergy analyses of a hydrogen fueled SI engine: Effect of ignition timing and compression ratio," Energy, Elsevier, vol. 175(C), pages 410-422.
    16. Tang, Li & Liu, Wei & Liu, Yan-Jun, 2024. "Dual design of control law and switching law for turbofan systems under multiple disturbances," Energy, Elsevier, vol. 296(C).
    17. Kim, Sangjo & Son, Changmin & Kim, Kuisoon, 2017. "Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system," Energy, Elsevier, vol. 119(C), pages 199-210.
    18. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    19. Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
    20. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.