IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v191y2020ics0360544219321851.html
   My bibliography  Save this article

Direct relationship between the system cooling load and indoor heat gain in a non-uniform indoor environment

Author

Listed:
  • Liang, Chao
  • Li, Xianting
  • Shao, Xiaoliang
  • Li, Baoming

Abstract

An accurate assessment of the system cooling load (SCL) is crucial in sizing air-conditioning systems for buildings. However, there is no explicit relationship between the SCL and heat gain in non-uniform indoor environments oriented to local requirements. To address this issue, a direct relationship between them was derived theoretically based on the average accessibility of heat sources, which quantifies the influence of each heat source on the local zone. Twenty-two cases in an office with different air distributions, target zones, and heat source scenarios were designed to further demonstrate it. The results indicate that (1) the established relationship reveals the influence rules of the heat gain on the SCL; (2) the established relationship allows the fast prediction of the SCL, which only conducted 1 and 4 simulations for obtaining the SCLs in 5 cases with different target zones and 16 cases with different heat source scenarios, respectively; (3) the advanced air distributions only provide the potential of decreasing the SCL, its implementation is mainly decided by the fresh-air ratio, and achieved the decrease rates of 0–38.1% in the cases with different fresh-air ratios. This study will be beneficial for designing and operating air-conditioning systems in non-uniform indoor environments.

Suggested Citation

  • Liang, Chao & Li, Xianting & Shao, Xiaoliang & Li, Baoming, 2020. "Direct relationship between the system cooling load and indoor heat gain in a non-uniform indoor environment," Energy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321851
    DOI: 10.1016/j.energy.2019.116490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    2. Ghiaus, Christian, 2013. "Causality issue in the heat balance method for calculating the design heating and cooling load," Energy, Elsevier, vol. 50(C), pages 292-301.
    3. Hout, Mohamad & Ghaddar, Nesreen & Ghali, Kamel & Ismail, Nagham & Simonetti, Marco & Fracastoro, Gian Vincenzo & Virgone, Joseph & Zoughaib, Assaad, 2017. "Displacement ventilation with cooled liquid desiccant dehumidification membrane at ceiling; modeling and design charts," Energy, Elsevier, vol. 139(C), pages 1003-1015.
    4. Liang, Chao & Li, Xianting & Melikov, Arsen Krikor & Shao, Xiaoliang & Li, Baoming, 2019. "A quantitative relationship between heat gain and local cooling load in a general non-uniform indoor environment," Energy, Elsevier, vol. 182(C), pages 412-423.
    5. Cui, Ying & Yan, Da & Hong, Tianzhen & Ma, Jingjin, 2017. "Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance," Energy, Elsevier, vol. 130(C), pages 286-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzu-Yang Hu & Chun-Kuei Chen & Feng-Yi Lin & Ta-Hui Lin, 2023. "Influence of Roller Blinds Shading Strategy on West and South Facing Buildings," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Liangwen Yan & Fengfeng Qian & Wei Li, 2018. "Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm," Energies, MDPI, vol. 12(1), pages 1-13, December.
    3. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    4. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    5. Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
    6. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties," Energy, Elsevier, vol. 250(C).
    7. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    8. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    9. Verma, Anoop & Asadi, Ali & Yang, Kai & Tyagi, Satish, 2015. "A data-driven approach to identify households with plug-in electrical vehicles (PEVs)," Applied Energy, Elsevier, vol. 160(C), pages 71-79.
    10. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    11. Cheng, Fanyong & Cui, Can & Cai, Wenjian & Zhang, Xin & Ge, Yuan & Li, Bingxu, 2022. "A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system," Energy, Elsevier, vol. 239(PB).
    12. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    13. Raillon, L. & Ghiaus, C., 2018. "An efficient Bayesian experimental calibration of dynamic thermal models," Energy, Elsevier, vol. 152(C), pages 818-833.
    14. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    15. Bobo Zhang & Qin Sun & Lin Su & Kaijun Dong & Weimin Luo & Haifeng Guan & Zhenhua Shao & Wei Wu, 2023. "Anti-Condensation Temperature Control Strategy of the Concrete Radiant Roof," Energies, MDPI, vol. 16(12), pages 1-14, June.
    16. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    17. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    18. Chen, Wanhe & Yin, Yonggao & Zhao, Xingwang & Fan, Fangsu & Cao, Bowen & Ji, Qiang & Xu, Guoying, 2023. "Sepiolite based humidity-control coating specially for alleviate the condensation problem of radiant cooling panel," Energy, Elsevier, vol. 272(C).
    19. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "The Development of ARIMA Models for the Clear Sky Beam and Diffuse Optical Depths for HVAC Systems Design Using RTSM: A Case Study of the Umlazi Township Area, South Africa," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    20. Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219321851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.