IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp739-752.html
   My bibliography  Save this article

Mapping scroll expander performance for organic working fluids using dimensionless parameters in Ns-Ds diagram

Author

Listed:
  • Narasimhan, Arun Kumar
  • Wickramaratne, Chatura
  • Kamal, Rajeev
  • Goswami, D. Yogi
  • Singh, Punit

Abstract

This paper presents an analysis of single-stage scroll expander performance for pure fluids and their zeotropic mixtures in supercritical conditions using dimensionless parameters, namely specific speed (Ns) and specific diameter (Ds). Scroll geometries with different aspect ratios were modeled for a range of expander inlet temperatures. The expander efficiency was modeled accounting for losses due to leakage, friction, and over- and under-expansion. The expander efficiency was plotted as a function of two dimensionless parameters to analyze the applicability domain of scroll expanders. For a particular expander inlet temperature (Tin), zeotropic mixtures result in more compact scroll geometries than pure fluids, leading to reduced losses and better expander efficiency. Any increase in Tin results in larger scrolls leading to higher leakage and thereby lower efficiency. At suitable operating conditions, an optimized scroll expander design can achieve expansion efficiency as high as 75%. Sub-optimal scroll designs for a given application lead to lower expansion efficiency due to over- or under-expansion losses.

Suggested Citation

  • Narasimhan, Arun Kumar & Wickramaratne, Chatura & Kamal, Rajeev & Goswami, D. Yogi & Singh, Punit, 2019. "Mapping scroll expander performance for organic working fluids using dimensionless parameters in Ns-Ds diagram," Energy, Elsevier, vol. 182(C), pages 739-752.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:739-752
    DOI: 10.1016/j.energy.2019.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Li Zhao & Shuai Deng & Ming Li & Yali Liu & Qiongfen Yu & Mengxing Li, 2022. "Novel Off-Design Operation Maps Showing Functionality Limitations of Organic Rankine Cycle Validated by Experiments," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Galloni, E., 2022. "Analysis on the waste heat recovery in a light duty vehicle," Energy, Elsevier, vol. 238(PA).
    3. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    4. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
    5. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    6. Braccio, Simone & Di Nardo, Antonio & Calchetti, Giorgio & Phan, Hai Trieu & Le Pierrès, Nolwenn & Tauveron, Nicolas, 2023. "Performance evaluation of a micro partial admission impulse axial turbine in a combined ammonia-water cooling and electricity absorption cycle," Energy, Elsevier, vol. 278(PB).
    7. Xander van Heule & Michel De Paepe & Steven Lecompte, 2022. "Two-Phase Volumetric Expanders: A Review of the State-of-the-Art," Energies, MDPI, vol. 15(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:739-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.