IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp768-780.html
   My bibliography  Save this article

A priori study of an extended flamelet/progress variable model for NO prediction in pulverized coal flames

Author

Listed:
  • Luo, Kun
  • Zhao, Chunguang
  • Wen, Xu
  • Gao, Zhengwei
  • Bai, Yun
  • Xing, Jiangkuan
  • Fan, Jianren

Abstract

An extended flamelet/progress variable (FPV) model is developed in this work to predict the NO formation in pulverized coal flames with a newly defined progress variable. The validity of the model is assessed through an a priori analysis, in which the thermo-chemical values predicted with the extended FPV model are compared with the corresponding reference results. It is found that the NO mass fraction in the pulverized coal flames can be well predicted with the extended model, which is sensitive to the progress variable. The prediction accuracy can be further improved by optimizing the definition of progress variable. The effects of strain rate and initial temperature on the performance of the extended FPV model are also investigated. The overall good agreements between the developed model predictions and the detailed chemistry solutions demonstrate that the extended FPV model has a better performance for NO prediction than the conventional one in pulverized coal flames. Compared with the conventional model, the deviations of maximum NO mass fraction predicted with the extended FPV model are decreased by 92.97%, 86.80% and 95.14% for three different strain rate cases as well as 86.80%, 82.81% and 87.45% for three different initial temperature cases, respectively.

Suggested Citation

  • Luo, Kun & Zhao, Chunguang & Wen, Xu & Gao, Zhengwei & Bai, Yun & Xing, Jiangkuan & Fan, Jianren, 2019. "A priori study of an extended flamelet/progress variable model for NO prediction in pulverized coal flames," Energy, Elsevier, vol. 175(C), pages 768-780.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:768-780
    DOI: 10.1016/j.energy.2019.03.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219305122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanak, Dawid P. & Manovic, Vasilije, 2016. "Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant," Energy, Elsevier, vol. 102(C), pages 343-353.
    2. Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Xu, Gang & Yang, Yongping, 2018. "A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants," Energy, Elsevier, vol. 142(C), pages 731-738.
    3. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    4. Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
    5. Wen, Xu & Luo, Kun & Luo, Yujuan & Kassem, Hassan I. & Jin, Hanhui & Fan, Jianren, 2016. "Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model," Applied Energy, Elsevier, vol. 183(C), pages 1086-1097.
    6. Hashimoto, Nozomu & Watanabe, Hiroaki & Kurose, Ryoichi & Shirai, Hiromi, 2017. "Effect of different fuel NO models on the prediction of NO formation/reduction characteristics in a pulverized coal combustion field," Energy, Elsevier, vol. 118(C), pages 47-59.
    7. Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    2. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
    3. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).
    4. Zhang, Xuelei & Zhang, Zhuoyuan & Wang, Gaofeng, 2023. "Thermodynamic and economic investigation of a novel combined cycle in coal-fired power plant with CO2 capture via Ca-looping," Energy, Elsevier, vol. 263(PB).
    5. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    6. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
    7. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    8. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    9. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
    10. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    11. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    12. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    13. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    14. Tong, Yongjing & Duan, Liqiang & Yang, Ming & Pang, Liping, 2022. "Design optimization of a new supercritical CO2 single reheat coal-fired power generation system," Energy, Elsevier, vol. 239(PB).
    15. Yang, D.L. & Tang, G.H. & Li, X.L. & Fan, Y.H., 2022. "Capacity-dependent configurations of S–CO2 coal-fired boiler by overall analysis with a unified model," Energy, Elsevier, vol. 245(C).
    16. Liu, Chao & Xu, Jinliang & Li, Mingjia & Wang, Qingyang & Liu, Guanglin, 2022. "The comprehensive solution to decrease cooling wall temperatures of sCO2 boiler for coal fired power plant," Energy, Elsevier, vol. 252(C).
    17. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2020. "Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process," Energy, Elsevier, vol. 208(C).
    18. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
    19. Fan, Y.H. & Tang, G.H. & Li, X.L. & Yang, D.L. & Wang, S.Q., 2019. "Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes," Energy, Elsevier, vol. 170(C), pages 480-496.
    20. Fan, Y.H. & Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L., 2022. "Design of S–CO2 coal-fired power system based on the multiscale analysis platform," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:768-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.