IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp224-236.html
   My bibliography  Save this article

Catalytic upgrading of biomass pyrolysis volatiles to bio-fuel under pre-plasma enhanced catalysis (PPEC) system

Author

Listed:
  • Fan, Yongsheng
  • Zhu, Lei
  • Fan, Lele
  • Zhao, Weidong
  • Cai, Yixi
  • Chen, Yuwei
  • Jin, Lizhu
  • Xiong, Yonglian

Abstract

A catalysis process enhanced by pre-plasma for bio-fuel preparation was proposed. Three aspects were included: (i) the process was analyzed and optimized aiming at comprehensive evaluation index, (ii) the Ti/HZSM-5 was introduced under optimal conditions and mechanism was explored, and (iii) the catalytic stability was evaluated. The results showed catalytic temperature, catalytic height and discharge power had significant effects on the index and interactions were exist. Optimal conditions were catalytic temperature of 455 °C, catalytic height of 26 mm and discharge power of 30 W. The energy consumption of pre-plasma occupied 12.35% of the total. Ti modification decreased the bio-fuel yield from 15.05% to 13.77%, and the oxygen content and calorific value reached 10.95% and 35.50 MJ/kg. The total hydrocarbon content was 52.90% and desired monocyclic aromatic hydrocarbons occupied 64.22%, and 82.84% of hydrocarbons were concentrated in the C10-C13 range. The main oxygenates after upgrading were hydroxyl containing compounds, which were difficult to eliminate due to the high hydrophilicity. The upgrading processed in series, involving reactant activation, catalytic reactions and multiple interactions. The coking rate of spent catalysts decreased from 6.85% to 3.15% after Ti modification, even in the case of that the effective hydrogen to carbon ratio of reactants was lower.

Suggested Citation

  • Fan, Yongsheng & Zhu, Lei & Fan, Lele & Zhao, Weidong & Cai, Yixi & Chen, Yuwei & Jin, Lizhu & Xiong, Yonglian, 2018. "Catalytic upgrading of biomass pyrolysis volatiles to bio-fuel under pre-plasma enhanced catalysis (PPEC) system," Energy, Elsevier, vol. 162(C), pages 224-236.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:224-236
    DOI: 10.1016/j.energy.2018.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218315445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papari, Sadegh & Hawboldt, Kelly, 2015. "A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1580-1595.
    2. Cai, Yixi & Fan, Yongsheng & Li, Xiaohua & Chen, Lei & Wang, Jiajun, 2016. "Preparation of refined bio-oil by catalytic transformation of vapors derived from vacuum pyrolysis of rape straw over modified HZSM-5," Energy, Elsevier, vol. 102(C), pages 95-105.
    3. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    4. Fan, Yongsheng & Zhao, Weidong & Shao, Shanshan & Cai, Yixi & Chen, Yuwei & Jin, Lizhu, 2018. "Promotion of the vapors from biomass vacuum pyrolysis for biofuels under Non-thermal Plasma Synergistic Catalysis (NPSC) system," Energy, Elsevier, vol. 142(C), pages 462-472.
    5. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    6. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haifeng & Ju, Shuai & Jin, Xin & Yuan, Yan & Wu, Yingji & Nadda, Ashok Kumar & Pugazhendhi, Arivalagan & Cai, Liping & Xia, Changlei, 2022. "A review of sensor applications towards precise control of pyrolysis of solid waste and biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Fan, Yongsheng & Zhu, Mengfeng & Jin, Lizhu & Cui, Entian & Zhu, Lei & Cai, Yixi & Zhao, Weidong, 2020. "Catalytic upgrading of biomass-derived vapors to bio-fuels via modified HZSM-5 coupled with DBD: Effects of different titanium sources," Renewable Energy, Elsevier, vol. 157(C), pages 100-115.
    3. Chistyakov, A.V. & Nikolaev, S.A. & Zharova, P.A. & Tsodikov, M.V. & Manenti, F., 2019. "Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst," Energy, Elsevier, vol. 166(C), pages 569-576.
    4. Zhang, Yuchun & Yi, Weiming & Fu, Peng & Li, Zhihe & Bai, Xueyuan & Tian, Chunyan & Wang, Nana & Li, Yongjun, 2019. "Flow and reaction characteristics on catalytic upgrading of biomass pyrolysis vapors in novel cyclone reactors," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yongsheng & Zhu, Mengfeng & Jin, Lizhu & Cui, Entian & Zhu, Lei & Cai, Yixi & Zhao, Weidong, 2020. "Catalytic upgrading of biomass-derived vapors to bio-fuels via modified HZSM-5 coupled with DBD: Effects of different titanium sources," Renewable Energy, Elsevier, vol. 157(C), pages 100-115.
    2. Fan, Yongsheng & Zhao, Weidong & Shao, Shanshan & Cai, Yixi & Chen, Yuwei & Jin, Lizhu, 2018. "Promotion of the vapors from biomass vacuum pyrolysis for biofuels under Non-thermal Plasma Synergistic Catalysis (NPSC) system," Energy, Elsevier, vol. 142(C), pages 462-472.
    3. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    6. Douglas Alberto Rocha de Castro & Haroldo Jorge da Silva Ribeiro & Lauro Henrique Hamoy Guerreiro & Lucas Pinto Bernar & Sami Jonatan Bremer & Marcelo Costa Santo & Hélio da Silva Almeida & Sergio Duv, 2021. "Production of Fuel-Like Fractions by Fractional Distillation of Bio-Oil from Açaí ( Euterpe oleracea Mart.) Seeds Pyrolysis," Energies, MDPI, vol. 14(13), pages 1-27, June.
    7. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    8. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Filippo Marchelli & Giorgio Rovero & Massimo Curti & Elisabetta Arato & Barbara Bosio & Cristina Moliner, 2021. "An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers," Energies, MDPI, vol. 14(2), pages 1-15, January.
    10. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    12. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    14. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    15. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    16. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    17. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    18. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Shao, Shanshan & Zhang, Pengfei & Xiang, Xianliang & Li, Xiaohua & Zhang, Huiyan, 2022. "Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides," Renewable Energy, Elsevier, vol. 190(C), pages 11-18.
    20. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:224-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.