IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp185-199.html
   My bibliography  Save this article

Utilization of waste heat for energy conservation in domestic dryers

Author

Listed:
  • Ma, Su-Sheng
  • Tseng, Ching-Yi
  • Jian, You-Ren
  • Yang, Tai-Her
  • Chen, Sih-Li

Abstract

A physical means of dehumidification was used in this study to recover and reuse waste heat emitted from tumble dryers to increase drying efficiency and decrease power consumption. An experiment was conducted; waste heat from a dryer was dehumidified in a heat exchanger, and some heat was reclaimed to preheat external air. After the optimal mixture ratio of external and re-circulated air had been determined, that optimal air mixture was introduced into the dryer through the recirculation air ducts designed in this study.

Suggested Citation

  • Ma, Su-Sheng & Tseng, Ching-Yi & Jian, You-Ren & Yang, Tai-Her & Chen, Sih-Li, 2018. "Utilization of waste heat for energy conservation in domestic dryers," Energy, Elsevier, vol. 162(C), pages 185-199.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:185-199
    DOI: 10.1016/j.energy.2018.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218315196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lambert, A.J.D. & Spruit, F.P.M. & Claus, J., 1991. "Modelling as a tool for evaluating the effects of energy-saving measures. Case study: A tumbler drier," Applied Energy, Elsevier, vol. 38(1), pages 33-47.
    2. Yadav, V. & Moon, C.G., 2008. "Fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(2-3), pages 143-158, February.
    3. Yadav, V. & Moon, C.G., 2008. "Modelling and experimentation for the fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(5), pages 404-419, May.
    4. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    5. Bansal, Pradeep & Sharma, Karishma & Islam, Sumana, 2010. "Thermal analysis of a new concept in a household clothes tumbler dryer," Applied Energy, Elsevier, vol. 87(5), pages 1562-1571, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    2. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Fil, Bachir & Garimella, Srinivas, 2022. "Energy-efficient gas-fired tumble dryer with adsorption thermal storage," Energy, Elsevier, vol. 239(PA).
    2. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    3. Singh, Panna Lal, 2011. "Silk cocoon drying in forced convection type solar dryer," Applied Energy, Elsevier, vol. 88(5), pages 1720-1726, May.
    4. Stawreberg, Lena & Nilsson, Lars, 2013. "Potential energy savings made by using a specific control strategy when tumble drying small loads," Applied Energy, Elsevier, vol. 102(C), pages 484-491.
    5. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    6. Ogonowski, Zbigniew, 2011. "Drying control system for spray booth with optimization of fuel consumption," Applied Energy, Elsevier, vol. 88(5), pages 1586-1595, May.
    7. Dupuis, Eric D. & Momen, Ayyoub M. & Patel, Viral K. & Shahab, Shima, 2019. "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," Applied Energy, Elsevier, vol. 235(C), pages 451-462.
    8. Bansal, Pradeep & Mohabir, Amar & Miller, William, 2016. "A novel method to determine air leakage in heat pump clothes dryers," Energy, Elsevier, vol. 96(C), pages 1-7.
    9. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    10. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    11. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    12. Qiang Si & Xiaosong Zhang, 2016. "Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System," Energies, MDPI, vol. 10(1), pages 1-14, December.
    13. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    14. Yadav, V. & Moon, C.G., 2008. "Fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(2-3), pages 143-158, February.
    15. Yu, Yuebin & Niu, Fuxin & Guo, Heinz-Axel & Woradechjumroen, Denchai, 2016. "A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water," Energy, Elsevier, vol. 99(C), pages 250-265.
    16. Rezk, Kamal & Forsberg, Jan, 2011. "Geometry development of the internal duct system of a heat pump tumble dryer based on fluid mechanic parameters from a CFD software," Applied Energy, Elsevier, vol. 88(5), pages 1596-1605, May.
    17. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    18. Liang, Jyun-De & Tsai, Lu-Kuan & Chai, Shaowei & Zhao, Yao & Chiang, Yuan-Ching & Dai, Yanjun & Chen, Sih-Li, 2023. "Experimental investigation and analysis of alumina/polymer/alginate composite desiccant materials," Energy, Elsevier, vol. 280(C).
    19. Bansal, Pradeep & Sharma, Karishma & Islam, Sumana, 2010. "Thermal analysis of a new concept in a household clothes tumbler dryer," Applied Energy, Elsevier, vol. 87(5), pages 1562-1571, May.
    20. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:185-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.