IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp451-462.html
   My bibliography  Save this article

Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process

Author

Listed:
  • Dupuis, Eric D.
  • Momen, Ayyoub M.
  • Patel, Viral K.
  • Shahab, Shima

Abstract

Ultrasonic vibrations, used to atomize liquids into a fine mist, are a promising solution for the future of efficient clothes drying technology. The world’s first ultrasonic dryer—demonstrated by researchers at Oak Ridge National Laboratory—successfully applies the scientific principles behind ultrasonic drying, and several working prototypes have been demonstrated. This technology is based on direct mechanical coupling between mesh piezoelectric transducers and wet fabric. During the atomization process, vertical oscillations of a contained liquid, called Faraday excitations, result in the formation of standing waves on the liquid surface. At increasing amplitudes and frequencies of oscillation, wave peaks become extended and form “necks” connecting small secondary droplets to the bulk liquid. When the oscillation reaches an acceleration threshold, the droplet momentum is sufficient to break the surface tension of the neck and enable the droplets to travel away from the liquid. In this work, we investigate the atomization process using an ultrasonic transducer as it pertains to moisture retained within a fabric. An experimentally validated electromechanical analytical-numerical model is proposed. This model bridges the vibrations of a piezoelectric mesh transducer to the critical acceleration needed for fabric drying to occur. Then, the drying rate model is developed, consisting of an initial nonlinear region due to atomization, followed by a linear thermal evaporation region. The models developed identify the influence of key parameters on ultrasonic drying and will aid in improving atomizer design for efficient, timely fabric drying. This study is the first proposed model for the ultrasonic atomization of fabrics saturated with water, applicable to any type of transducer. The results present a non-dimensional equation for the ultrasonic dewatering of fabrics, dependent only on transducer acceleration and the surface area of the cloth. The development of this technology using the proposed physical models will allow for global reductions in electrical demand related to clothes drying.

Suggested Citation

  • Dupuis, Eric D. & Momen, Ayyoub M. & Patel, Viral K. & Shahab, Shima, 2019. "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," Applied Energy, Elsevier, vol. 235(C), pages 451-462.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:451-462
    DOI: 10.1016/j.apenergy.2018.10.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918316684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    2. Peng, Chang & Ravi, Saitej & Patel, Viral K. & Momen, Ayyoub M. & Moghaddam, Saeed, 2017. "Physics of direct-contact ultrasonic cloth drying process," Energy, Elsevier, vol. 125(C), pages 498-508.
    3. Ng, Ah Bing & Deng, Shiming, 2008. "A new termination control method for a clothes drying process in a clothes dryer," Applied Energy, Elsevier, vol. 85(9), pages 818-829, September.
    4. Yadav, V. & Moon, C.G., 2008. "Fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(2-3), pages 143-158, February.
    5. Peng, Chang & Momen, Ayyoub M. & Moghaddam, Saeed, 2017. "An energy-efficient method for direct-contact ultrasonic cloth drying," Energy, Elsevier, vol. 138(C), pages 133-138.
    6. Yadav, V. & Moon, C.G., 2008. "Modelling and experimentation for the fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(5), pages 404-419, May.
    7. Stawreberg, Lena & Nilsson, Lars, 2013. "Potential energy savings made by using a specific control strategy when tumble drying small loads," Applied Energy, Elsevier, vol. 102(C), pages 484-491.
    8. Letschert, Virginie & Desroches, Louis-Benoit & Ke, Jing & McNeil, Michael, 2013. "Energy efficiency – How far can we raise the bar? Revealing the potential of best available technologies," Energy, Elsevier, vol. 59(C), pages 72-82.
    9. Bansal, Pradeep & Sharma, Karishma & Islam, Sumana, 2010. "Thermal analysis of a new concept in a household clothes tumbler dryer," Applied Energy, Elsevier, vol. 87(5), pages 1562-1571, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    2. El Fil, Bachir & Garimella, Srinivas, 2022. "Energy-efficient gas-fired tumble dryer with adsorption thermal storage," Energy, Elsevier, vol. 239(PA).
    3. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    4. Ogonowski, Zbigniew, 2011. "Drying control system for spray booth with optimization of fuel consumption," Applied Energy, Elsevier, vol. 88(5), pages 1586-1595, May.
    5. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    6. Singh, Panna Lal, 2011. "Silk cocoon drying in forced convection type solar dryer," Applied Energy, Elsevier, vol. 88(5), pages 1720-1726, May.
    7. Stawreberg, Lena & Nilsson, Lars, 2013. "Potential energy savings made by using a specific control strategy when tumble drying small loads," Applied Energy, Elsevier, vol. 102(C), pages 484-491.
    8. Ma, Su-Sheng & Tseng, Ching-Yi & Jian, You-Ren & Yang, Tai-Her & Chen, Sih-Li, 2018. "Utilization of waste heat for energy conservation in domestic dryers," Energy, Elsevier, vol. 162(C), pages 185-199.
    9. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    10. Oliveira, Mario Henrique da Fonseca & Rebelatto, Daisy Aparecida do Nascimento, 2015. "The evaluation of electric energy consumption in the Brazilian residential sector: A technological improvement proposal in order to increase its efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 836-844.
    11. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    12. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    13. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    14. Cranston, Jonathan & Askalany, Ahmed & Santori, Giulio, 2019. "Efficient drying in washer dryers by combining sorption and heat pumping," Energy, Elsevier, vol. 183(C), pages 683-692.
    15. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    16. Stevanovic, Vladimir D. & Wala, Tadeusz & Muszynski, Slawomir & Milic, Milos & Jovanovic, Milorad, 2014. "Efficiency and power upgrade by an additional high pressure economizer installation at an aged 620 MWe lignite-fired power plant," Energy, Elsevier, vol. 66(C), pages 907-918.
    17. Park, Nyun-Bae & Park, Sang Yong & Kim, Jong-Jin & Choi, Dong Gu & Yun, Bo Yeong & Hong, Jong Chul, 2017. "Technical and economic potential of highly efficient boiler technologies in the Korean industrial sector," Energy, Elsevier, vol. 121(C), pages 884-891.
    18. Alexander N. Alekseev & Aleksei V. Bogoviz & Ludmila P. Goncharenko & Sergey A. Sybachin, 2019. "A Critical Review of Russia s Energy Strategy in the Period until 2035," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 95-102.
    19. Rathore, N.S. & Panwar, N.L., 2010. "Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying," Applied Energy, Elsevier, vol. 87(8), pages 2764-2767, August.
    20. Rezk, Kamal & Forsberg, Jan, 2011. "Geometry development of the internal duct system of a heat pump tumble dryer based on fluid mechanic parameters from a CFD software," Applied Energy, Elsevier, vol. 88(5), pages 1596-1605, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:451-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.