IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp845-858.html
   My bibliography  Save this article

A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis

Author

Listed:
  • Soriano, J.A.
  • Mata, C.
  • Armas, O.
  • Ávila, C.

Abstract

The injection rate curve is an important input parameter in the thermodynamic diagnosis and in the predictive models, and it can also be used to simulate fuel sprays under different operating conditions. In this work, a zero-dimensional fuel injection rate model is proposed from experimental data obtained from a common-rail injection system with two solenoid-operated injectors. The model proposed is a useful tool when the internal component's dimensions of the injector are unknown. The presented model only requires the injection pressure, the injector energization signal, the total fuel mass consumed per stroke, the geometry and the holes number of the fuel injector and, finally, some physical properties of fuel. The model has been applied to two different solenoid-operated injectors and two fuels. The comparative results between the experimental and the modelled fuel injection rate show excellent results despite the simplicity of the experimental data requirements. The effects of the introduction of the modelled and measured fuel injection rate in a thermodynamic diagnostic tool are shown. This proposed model can be a useful, simple and alternative tool for estimating rates of injection without the need to carry out a test of the rate of injection.

Suggested Citation

  • Soriano, J.A. & Mata, C. & Armas, O. & Ávila, C., 2018. "A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis," Energy, Elsevier, vol. 158(C), pages 845-858.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:845-858
    DOI: 10.1016/j.energy.2018.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.
    2. Plamondon, E. & Seers, P., 2014. "Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends," Applied Energy, Elsevier, vol. 131(C), pages 411-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
    2. Yao Fu & Liyan Feng & Hua Tian & Wuqiang Long & Dongsheng Dong & Xianyin Leng, 2018. "Visualization Investigation of the Influence of Chamber Profile and Injection Parameters on Fuel Spray Spreading in a Double-Layer Diverging Combustion Chamber for a DI Diesel Engine," Energies, MDPI, vol. 11(9), pages 1-16, September.
    3. Samir Ezzitouni & Pablo Fernández-Yáñez & Luis Sánchez Rodríguez & Octavio Armas & Javier de las Morenas & Eduard Massaguer & Albert Massaguer, 2021. "Electrical Modelling and Mismatch Effects of Thermoelectric Modules on Performance of a Thermoelectric Generator for Energy Recovery in Diesel Exhaust Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
    4. Liu, Bingxin & Fei, Hongzi & Wang, Liuping & Fan, Liyun & Yang, Xiaotao, 2024. "Real-time estimation of fuel injection rate and injection volume in high-pressure common rail systems," Energy, Elsevier, vol. 298(C).
    5. Carmen Mata & Jakub Piaszyk & José Antonio Soriano & José Martín Herreros & Athanasios Tsolakis & Karl Dearn, 2020. "Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System," Energies, MDPI, vol. 13(16), pages 1-14, August.
    6. Lu, Xiangdong & Zhao, Jianhui & Markov, Vladimir & Wu, Tianyu, 2024. "Study on precise fuel injection under multiple injections of high pressure common rail system based on deep learning," Energy, Elsevier, vol. 307(C).
    7. Luka Lešnik & Breda Kegl & Eloísa Torres-Jiménez & Fernando Cruz-Peragón & Carmen Mata & Ignacijo Biluš, 2021. "Effect of the In-Cylinder Back Pressure on the Injection Process and Fuel Flow Characteristics in a Common-Rail Diesel Injector Using GTL Fuel," Energies, MDPI, vol. 14(2), pages 1-21, January.
    8. Soriano, J.A. & García-Contreras, R. & Gómez, A. & Mata, C., 2019. "Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    2. Do, Thai Ngan & Hur, Young Gul & Chung, Hegwon & Kim, Jiyong, 2023. "Potentials and benefit assessment of green fuels from residue gas via gas-to-liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Alexander I. Balitskii & Karol F. Abramek & Tomasz K. Osipowicz & Jacek J. Eliasz & Valentina O. Balitska & Paweł Kochmański & Konrad Prajwowski & Łukasz S. Mozga, 2023. "Hydrogen-Containing “Green” Fuels Influence on the Thermal Protection and Formation of Wear Processes Components in Compression-Ignition Engines Modern Injection System," Energies, MDPI, vol. 16(8), pages 1-17, April.
    4. Piotr Wróblewski & Jerzy Kupiec & Wojciech Drożdż & Wojciech Lewicki & Jarosław Jaworski, 2021. "The Economic Aspect of Using Different Plug-In Hybrid Driving Techniques in Urban Conditions," Energies, MDPI, vol. 14(12), pages 1-17, June.
    5. Yuanjian Zhang & Liang Chu & Zicheng Fu & Nan Xu & Chong Guo & Yukuan Li & Zhouhuan Chen & Hanwen Sun & Qin Bai & Yang Ou, 2017. "An Economical Route Planning Method for Plug-In Hybrid Electric Vehicle in Real World," Energies, MDPI, vol. 10(11), pages 1-23, November.
    6. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    7. Carmen Mata & Jakub Piaszyk & José Antonio Soriano & José Martín Herreros & Athanasios Tsolakis & Karl Dearn, 2020. "Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System," Energies, MDPI, vol. 13(16), pages 1-14, August.
    8. Intarat Naruemon & Long Liu & Qihao Mei & Xiuzhen Ma, 2019. "Investigation on an Injection Strategy Optimization for Diesel Engines Using a One-Dimensional Spray Model," Energies, MDPI, vol. 12(21), pages 1-19, November.
    9. Serrano, L. & Lopes, M. & Pires, N. & Ribeiro, I. & Cascão, P. & Tarelho, L. & Monteiro, A. & Nielsen, O. & da Silva, M. Gameiro & Borrego, C., 2015. "Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 230-238.
    10. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    11. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    12. Ilya Bogdanov & Yana Morozova & Andrey Altynov & Alina Titaeva & Maria Kirgina, 2024. "Ways to Improve the Effectiveness of Depressant Additives for the Production of Winter and Arctic Diesel Fuels," Resources, MDPI, vol. 13(2), pages 1-19, February.
    13. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    14. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    15. Kibong Choi & Suhan Park & Hyun Gu Roh & Chang Sik Lee, 2019. "Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine," Energies, MDPI, vol. 12(11), pages 1-16, June.
    16. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
    17. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:845-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.