IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp352-359.html
   My bibliography  Save this article

Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant

Author

Listed:
  • Bonforte, Giuseppe
  • Buchgeister, Jens
  • Manfrida, Giampaolo
  • Petela, Karolina

Abstract

Integration of solar power to Combined Cycle Power Plants is a solution attracting increasing interest, bridging solar thermal technology to a well-proven energy conversion solution. The integration is attractive for countries aiming to pass to natural gas as an energy feedstock and it could improve the environmental performance. In order to identify the performance and potential environmental benefits, a model of the plant was applied. It covered an annual operation period and included the effects of surroundings variables. The model allows to predict the power plant performance, and calculates a complete exergy balance for all the components of the complex plant. The calculations are repeated for referential CCGT and for the Integrated Solar CCGT.

Suggested Citation

  • Bonforte, Giuseppe & Buchgeister, Jens & Manfrida, Giampaolo & Petela, Karolina, 2018. "Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 352-359.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:352-359
    DOI: 10.1016/j.energy.2018.05.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    2. Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
    3. Pavão, Leandro V. & Caballero, José A. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2020. "A pinch-based method for defining pressure manipulation routes in work and heat exchange networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    5. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    6. Hachem, Joe & Schuhler, Thierry & Orhon, Dominique & Cuif-Sjostrand, Marianne & Zoughaib, Assaad & Molière, Michel, 2022. "Exhaust gas recirculation applied to single-shaft gas turbines: An energy and exergy approach," Energy, Elsevier, vol. 238(PB).
    7. Dongli Tan & Yao Wu & Zhiqing Zhang & Yue Jiao & Lingchao Zeng & Yujun Meng, 2023. "Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements," Sustainability, MDPI, vol. 15(15), pages 1-37, July.
    8. Fumin Pan & Xiaobei Cheng & Xin Wu & Xin Wang & Jingfeng Gong, 2019. "Thermodynamic Design and Performance Calculation of the Thermochemical Reformers," Energies, MDPI, vol. 12(19), pages 1-14, September.
    9. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2021. "Exergoenvironmental analysis of the integrated copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 226(C).
    10. Moharramian, Anahita & Soltani, Saeed & Rosen, Marc A. & Mahmoudi, S.M.S. & Bhattacharya, Tanushree, 2019. "Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production," Energy, Elsevier, vol. 167(C), pages 715-729.
    11. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    12. Cavalcanti, Eduardo J.C. & Lima, Matheus S.R. & de Souza, Gabriel F., 2020. "Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses," Renewable Energy, Elsevier, vol. 156(C), pages 1336-1347.
    13. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    14. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    15. Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Federico Rossi & Adalgisa Sinicropi & Lorenzo Talluri, 2020. "Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage," Energies, MDPI, vol. 13(13), pages 1-21, July.
    16. Haghghi, Maghsoud Abdollahi & Mohammadi, Zahra & Pesteei, Seyed Mehdi & Chitsaz, Ata & Parham, Kiyan, 2020. "Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:352-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.