IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp476-488.html
   My bibliography  Save this article

A heat integration method with multiple heat exchange interfaces

Author

Listed:
  • Bütün, Hür
  • Kantor, Ivan
  • Maréchal, François

Abstract

In recent decades, energy efficiency has become one of the key issues facing large process industries. Mounting economic, environmental and social pressure motivate energy-intensive industries to improve their efficiency. Identifying retrofit opportunities in large-scale problems is extremely complex due to numerous interconnections and dependencies between process units, sub-units and utilities present on most industrial sites. Therefore, when attempting to identify promising retrofit opportunities, methods detecting early design decisions are crucial. Techniques applying heat integration (HI) often use mathematical models and optimization to survey potential solutions. Mixed integer linear programming (MILP) is often used for industrial energy efficiency case studies due to its flexibility, solution speed and guaranteed optimal solution while taking advantage of the extensive bodies of work dedicated to this type of problem. The current work proposes a methodology based on HI and MILP to represent process energy requirements with different heat exchange interfaces. Switching from the current utility interface to an alternative one requires additional heat transfer area while it might bring operational benefits due to better system integration. The optimal combination of the processes with different interfaces is obtained by considering the trade-off between the cost of additional heat exchanger area required and decrease in the operating cost. The proposed method is applied to two industrial case studies which show the added value for HI and impact of the proposed method for reducing the problem size in heat exchanger network (HEN) design. In the first case study, the total cost of the system is reduced by 45% taking into account the cost of the modifications in the existing heat exchangers while in the second case study the computation time of heat load distribution (HLD) is reduced by 78% using the results of optimal interface selection. The proposed method provides early design decisions for retrofit solutions on industrial sites. Utilizing this methodology provides a dual benefit of identifying the most promising options for retrofit applications while also eliminating inconsequential ones at an early stage of the analysis.

Suggested Citation

  • Bütün, Hür & Kantor, Ivan & Maréchal, François, 2018. "A heat integration method with multiple heat exchange interfaces," Energy, Elsevier, vol. 152(C), pages 476-488.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:476-488
    DOI: 10.1016/j.energy.2018.03.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bungener, Stephane & Hackl, Roman & Van Eetvelde, Greet & Harvey, Simon & Marechal, Francois, 2015. "Multi-period analysis of heat integration measures in industrial clusters," Energy, Elsevier, vol. 93(P1), pages 220-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    2. Zhou, Hao & Li, Hong & Geng, Xueli & Gao, Xin, 2023. "Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification," Energy, Elsevier, vol. 282(C).
    3. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "An Optimisation Approach for Long-Term Industrial Investment Planning," Energies, MDPI, vol. 12(21), pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    2. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    3. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    4. Liana KOBZEVA & Evgeny GRIBOV & Marina SNIGIREVA & Valensiya RAEVSKAYA, 2017. "Cluster Initiative in Fine Chemicals as a Case of Practical Implementation of Triple Helix Collaboration for Regional Economic Growth and Innovation-Driven Development," Management Dynamics in the Knowledge Economy, College of Management, National University of Political Studies and Public Administration, vol. 5(1), pages 33-56, March.
    5. Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
    6. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    7. Lythcke-Jørgensen, Christoffer Ernst & Münster, Marie & Ensinas, Adriano Viana & Haglind, Fredrik, 2016. "A method for aggregating external operating conditions in multi-generation system optimization models," Applied Energy, Elsevier, vol. 166(C), pages 59-75.
    8. Omar Al-Ani & Patrick Linke, 2018. "Power Generation Targets from Hot Composite Curves," Energies, MDPI, vol. 11(2), pages 1-12, February.
    9. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:476-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.