IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp427-444.html
   My bibliography  Save this article

Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles

Author

Listed:
  • Liu, Hui
  • Li, Xunming
  • Wang, Weida
  • Han, Lijin
  • Xiang, Changle

Abstract

Power management strategy of plug-in hybrid electric vehicle for real-time application is a major challenge as the driving pattern is unknown beforehand. In this work, an innovative real-time power management strategy framework is proposed, including short horizon driving pattern prediction, driving pattern recognition, parameter off-line optimisation, parameter on-line prediction modelling, and power management strategy real-time application. A group of characteristic parameters is used to recognise driving patterns and the engine and motor working points are optimised globally by distributed genetic algorithm off-line. The optimised results approximation model is built on the basis of a radial basis function-neural network. Based on a linear programming algorithm, the higher order Markov velocity predictor is designed to obtain the short-horizon driving conditions. Combining the optimisation results approximation model, the real-time power management strategy is proposed. The on-line optimisation power management strategy comparing to the rule-based is analysed and the MATLAB/Simulink/AVL Cruise co-simulation results demonstrate that the fuel economy of real-time power management strategy improved by 16.3%, 12.7%, and 9.1% in HWFET, LA92, and Japanese urban driving patterns, respectively, which is largely higher than with a traditional rule-based strategy and slightly lower than, or approximately equal to, the global optimisation strategy.

Suggested Citation

  • Liu, Hui & Li, Xunming & Wang, Weida & Han, Lijin & Xiang, Changle, 2018. "Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 427-444.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:427-444
    DOI: 10.1016/j.energy.2018.03.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    2. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    3. Khayyam, Hamid & Bab-Hadiashar, Alireza, 2014. "Adaptive intelligent energy management system of plug-in hybrid electric vehicle," Energy, Elsevier, vol. 69(C), pages 319-335.
    4. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    5. Yu, Huilong & Tarsitano, Davide & Hu, Xiaosong & Cheli, Federico, 2016. "Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system," Energy, Elsevier, vol. 112(C), pages 322-331.
    6. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    7. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    8. W K Ching & E S Fung & M K Ng, 2003. "A higher-order Markov model for the Newsboy's problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 291-298, March.
    9. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    10. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    11. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    12. Zhang, Shuo & Xiong, Rui & Zhang, Chengning & Sun, Fengchun, 2016. "An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus," Energy, Elsevier, vol. 96(C), pages 437-448.
    13. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    3. Zhang, Chi & Zeng, Guohong & Wu, Jian & Wei, Shaoyuan & Zhang, Weige & Sun, Bingxiang, 2023. "Integrated optimization of driving strategy and energy management for hybrid diesel multiple units," Energy, Elsevier, vol. 281(C).
    4. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    5. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2022. "Energy saving analysis in electrified powertrain using look-ahead energy management scheme," Applied Energy, Elsevier, vol. 325(C).
    6. Fan, Likang & Wang, Yufei & Wei, Hongqian & Zhang, Youtong & Zheng, Pengyu & Huang, Tianyi & Li, Wei, 2022. "A GA-based online real-time optimized energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 241(C).
    7. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    8. Lu Han & Xiaohong Jiao & Zhao Zhang, 2020. "Recurrent Neural Network-Based Adaptive Energy Management Control Strategy of Plug-In Hybrid Electric Vehicles Considering Battery Aging," Energies, MDPI, vol. 13(1), pages 1-22, January.
    9. Zhang, LiPeng & Liu, Wei & Qi, BingNan, 2020. "Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction," Energy, Elsevier, vol. 206(C).
    10. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    11. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    12. Zhang, Zhendong & He, Hongwen & Guo, Jinquan & Han, Ruoyan, 2020. "Velocity prediction and profile optimization based real-time energy management strategy for Plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 280(C).
    13. Li, Xunming & Han, Lijin & Liu, Hui & Wang, Weida & Xiang, Changle, 2019. "Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm," Energy, Elsevier, vol. 172(C), pages 1161-1178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    2. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    3. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    4. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    5. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    6. Li, Ji & Zhou, Quan & He, Yinglong & Shuai, Bin & Li, Ziyang & Williams, Huw & Xu, Hongming, 2019. "Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Tian, He & Lu, Ziwang & Wang, Xu & Zhang, Xinlong & Huang, Yong & Tian, Guangyu, 2016. "A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus," Applied Energy, Elsevier, vol. 177(C), pages 71-80.
    8. Fan, Likang & Wang, Yufei & Wei, Hongqian & Zhang, Youtong & Zheng, Pengyu & Huang, Tianyi & Li, Wei, 2022. "A GA-based online real-time optimized energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 241(C).
    9. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    10. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    11. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    13. Chen, Syuan-Yi & Wu, Chien-Hsun & Hung, Yi-Hsuan & Chung, Cheng-Ta, 2018. "Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization," Energy, Elsevier, vol. 160(C), pages 154-170.
    14. Gye-Seong Lee & Dong-Hyun Kim & Jong-Ho Han & Myeong-Hwan Hwang & Hyun-Rok Cha, 2019. "Optimal Operating Point Determination Method Design for Range-Extended Electric Vehicles Based on Real Driving Tests," Energies, MDPI, vol. 12(5), pages 1-17, March.
    15. Dimitrova, Zlatina & Maréchal, François, 2015. "Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains," Energy, Elsevier, vol. 83(C), pages 539-550.
    16. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    17. Ye Yang & Youtong Zhang & Jingyi Tian & Si Zhang, 2018. "Research on a Plug-In Hybrid Electric Bus Energy Management Strategy Considering Drivability," Energies, MDPI, vol. 11(8), pages 1-22, August.
    18. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    19. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Du, Yongchang & Zhao, Yue & Wang, Qinpu & Zhang, Yuanbo & Xia, Huaicheng, 2016. "Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus," Energy, Elsevier, vol. 115(P1), pages 1259-1271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:427-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.