IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp655-665.html
   My bibliography  Save this article

Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles

Author

Listed:
  • Rezaei, A.
  • Burl, J.B.
  • Solouk, A.
  • Zhou, B.
  • Rezaei, M.
  • Shahbakhti, M.

Abstract

This paper introduces a new energy management (EM) strategy for series hybrid electric vehicles (HEVs). Series HEVs operate in charge-depletion mode and then switch to the charge-sustaining mode in which the battery state of charge (SOC) is maintained within a certain range. The proposed EM strategy in this paper is a form of adaptive equivalent consumption minimization strategy (ECMS) that is designed for the charge-sustaining mode. The EM strategy defines soft bounds on the battery SOC and is penalized for exceeding these bounds. But, to catch energy-saving opportunities (CESOs), the EM strategy allows SOC to exceed the soft bounds. Thus, the introduced EM strategy is named ECMS-CESO. In addition, a range for the ECMS optimal equivalent factor is proposed for series HEVs. The proposed range is used in deriving the formula for calculating the adaptive equivalent factor. The main advantage of the proposed EM strategy is that ECMS-CESO can achieve close to optimal fuel economy without the need for predicting future driver demand. Since there is no need for prediction, the intensive calculations for finding the optimal control over the prediction horizon can be eliminated. Therefore, implementation of ECMS-CESO is easily feasible for real-time applications. Experimental powertrain data is collected to develop a powertrain model for a series HEV in this study. Simulation results on several drivecycles show that, on average, the fuel economy achieved by ECMS-CESO is within 6% of the maximum fuel economy. In addition, comparing ECMS-CESO with two existing adaptive ECMSs shows up to 5% improvement in fuel economy, on average.

Suggested Citation

  • Rezaei, A. & Burl, J.B. & Solouk, A. & Zhou, B. & Rezaei, M. & Shahbakhti, M., 2017. "Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 208(C), pages 655-665.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:655-665
    DOI: 10.1016/j.apenergy.2017.09.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:655-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.