Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.10.110
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yuanyuan & Sun, Haohao & Qiu, Yunfeng & Zhang, Enhao & Ma, Tiange & Gao, Guang-gang & Cao, Changyan & Ma, Zhuo & Hu, PingAn, 2018. "Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method," Energy, Elsevier, vol. 165(PB), pages 537-548.
- Yuan, Wenjing & Xie, Anjian & Chen, Ping & Huang, Fangzhi & Li, Shikuo & Shen, Yuhua, 2018. "Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-Free catalyst for the oxygen reduction reaction," Energy, Elsevier, vol. 152(C), pages 333-340.
- Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
- Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
- Brenda Ai-Lian Lim & Steven Lim & Yean Ling Pang & Siew Hoong Shuit & Kam Huei Wong & Jong Boon Ooi, 2022. "Investigation on the Potential of Various Biomass Waste for the Synthesis of Carbon Material for Energy Storage Application," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
- Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
- Lim, B.A. & Lim, S. & Pang, Y.L. & Shuit, S.H. & Kuan, S.H., 2023. "Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Chen, Tianju & Zhang, Juan & Wang, Zhiqi & Zhao, Ruidong & He, Jianjiang & Wu, Jinhu & Qin, Jianguang, 2020. "Oxygen-enriched gasification of lignocellulosic biomass: Syngas analysis, physicochemical characteristics of the carbon-rich material and its utilization as an anode in lithium ion battery," Energy, Elsevier, vol. 212(C).
More about this item
Keywords
Activated carbon; Dual doping; Oxygen reduction; Zn-air battery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:43-55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.