IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp811-822.html
   My bibliography  Save this article

Robust multi-objective optimization of gasifier and solid oxide fuel cell plant for electricity production using wood

Author

Listed:
  • Sharma, Shivom
  • Celebi, Ayse Dilan
  • Maréchal, François

Abstract

Biomass is an attractive renewable and stored energy that can be converted to transportation fuels, chemicals and electricity using bio-chemical and thermo-chemical conversion routes. Notably, biofuels have relatively lower greenhouse gas emissions compared to the fossil fuels. A biomass gasifier can convert lignocellulosic biomass such as wood into syngas, which can be used in Solid Oxide Fuel Cell (SOFC) to produce heat and electricity. SOFC has very good thermodynamic conversion efficiency for converting methane or hydrogen into electricity, and integration of SOFC with gasifier gives heat integration opportunities that allow one to design systems with electricity production efficiencies as high as 70%. Generally, process design and operational optimization problems have conflicting performance objectives, and Multi-Objective Optimization (MOO) methods are applied to quantify the trade-offs among the objectives and to obtain the optimal values of design and operating parameters. This study optimizes biomass gasifier and SOFC plant for annual profit and annualized capital cost, simultaneously. A Pareto front has been obtained by solving MOO problem, and then net flow method is used to identify some optimal solutions from the Pareto front for the implementation into next phase. The constructed composite curves, which notify maximum amount of possible heat recovery, and first law efficiency also indicate better performance of the integrated plant. Uncertainty of market and operating parameters has been added to the optimization problem, and robust MOO of the integrated plant has been performed, which retains less sensitive Pareto solutions during the optimization. Finally, Pareto solutions obtained via normal and robust MOO approaches are considered for uncertainty analysis, and Pareto solutions obtained via robust MOO found to be less sensitive.

Suggested Citation

  • Sharma, Shivom & Celebi, Ayse Dilan & Maréchal, François, 2017. "Robust multi-objective optimization of gasifier and solid oxide fuel cell plant for electricity production using wood," Energy, Elsevier, vol. 137(C), pages 811-822.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:811-822
    DOI: 10.1016/j.energy.2017.04.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chutichai, Bhawasut & Authayanun, Suthida & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2013. "Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation," Energy, Elsevier, vol. 55(C), pages 98-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
    2. Massrur, Hamid Reza & Niknam, Taher & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2018. "A stochastic mid-term scheduling for integrated wind-thermal systems using self-adaptive optimization approach: A comparative study," Energy, Elsevier, vol. 155(C), pages 552-564.
    3. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    2. Gao, Dan & Jiang, Dongfang & Liu, Pei & Li, Zheng & Hu, Sangao & Xu, Hong, 2014. "An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power," Energy, Elsevier, vol. 66(C), pages 332-341.
    3. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2015. "Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system," Energy, Elsevier, vol. 80(C), pages 331-339.
    4. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    6. Jae-Eun Shin, 2022. "Hydrogen Technology Development and Policy Status by Value Chain in South Korea," Energies, MDPI, vol. 15(23), pages 1-19, November.
    7. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2014. "Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems," Energy, Elsevier, vol. 68(C), pages 989-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:811-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.