IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v132y2017icp305-314.html
   My bibliography  Save this article

Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR

Author

Listed:
  • Zhao, Yangsheng
  • Feng, Zijun
  • Zhao, Yu
  • Wan, Zhijun

Abstract

Thermal cracking behavior of granite at high temperature and high pressure (HTHP) is the key to the performance of Hot Dry Rock (HDR) geothermal energy extraction system. In this study, permeability tests accompanying acoustic emission (AE) tests in granites are first conducted under HTHP by 600 °C 20MN servo control rock triaxial testing machine. The test results show that granites, nearly impermeable rocks, can show a striking increase of permeability by heating from the critical temperature. The growth curve of granite permeability shows two phases because of the multi-period of thermal-cracking in the heating process from room temperature to 500 °C. The coupled effect of temperature and pressure shows that critical temperature of permeability change decreases with increasing confining pressure. Then, a detailed characterization of the sample microstructure is presented using Micro-CT method. It is discovered that thermal cracking mainly occurs at grain boundaries in forms of inter-granular microcracks along apparent weaknesses, and develops with increasing temperature. Meanwhile intra-granular cracks are observed when heating to 500 °C, indicating that thermal cracking in granite under HTHP is induced by both intra-granular and inter-granular thermal stress. At last, experimental stimulation and application for geothermal mining of HDR are discussed.

Suggested Citation

  • Zhao, Yangsheng & Feng, Zijun & Zhao, Yu & Wan, Zhijun, 2017. "Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR," Energy, Elsevier, vol. 132(C), pages 305-314.
  • Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:305-314
    DOI: 10.1016/j.energy.2017.05.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yangsheng & Feng, Zijun & Feng, Zengchao & Yang, Dong & Liang, Weiguo, 2015. "THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M," Energy, Elsevier, vol. 82(C), pages 193-205.
    2. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2019. "Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock," Renewable Energy, Elsevier, vol. 139(C), pages 71-79.
    2. Wang, Yijiang & Jiang, Jinyi & Darkwa, Jo & Xu, Zeyuan & Zheng, Xiaofeng & Zhou, Guoqing, 2020. "Experimental study of thermal fracturing of Hot Dry Rock irradiated by moving laser beam: Temperature, efficiency and porosity," Renewable Energy, Elsevier, vol. 160(C), pages 803-816.
    3. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    4. Zhang, Wei & Guo, Tian-kui & Qu, Zhan-qing & Wang, Zhiyuan, 2019. "Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective," Energy, Elsevier, vol. 178(C), pages 508-521.
    5. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2020. "Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining," Renewable Energy, Elsevier, vol. 153(C), pages 499-508.
    6. Cai, Jianchao & Zhang, Zhien & Wei, Wei & Guo, Dongming & Li, Shuai & Zhao, Peiqiang, 2019. "The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity," Energy, Elsevier, vol. 188(C).
    7. Yangchun Wu & Linqi Huang & Xibing Li & Yide Guo & Huilin Liu & Jiajun Wang, 2022. "Effects of Strain Rate and Temperature on Physical Mechanical Properties and Energy Dissipation Features of Granite," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    8. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2019. "Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock," Renewable Energy, Elsevier, vol. 139(C), pages 71-79.
    2. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    3. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    4. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    5. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    6. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2020. "Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining," Renewable Energy, Elsevier, vol. 153(C), pages 499-508.
    7. Nana Liu & Yongliang Wang, 2022. "Deflection of Hydraulic Fractures and Shear Stress Disturbance Considering Thermal Effects: A Numerical Case Study," Energies, MDPI, vol. 15(13), pages 1-15, July.
    8. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    9. Gao, Xiang & Li, Tailu, 2022. "Synergetic characteristics of three-dimensional transient heat transfer in geothermal reservoir combined with power conversion for enhanced geothermal system," Renewable Energy, Elsevier, vol. 192(C), pages 216-230.
    10. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    11. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    12. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    13. Zeng, Yuchao & Tang, Liansheng & Wu, Nengyou & Cao, Yifei, 2017. "Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field," Energy, Elsevier, vol. 127(C), pages 218-235.
    14. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    15. Saeed Mahmoodpour & Mrityunjay Singh & Ramin Mahyapour & Sri Kalyan Tangirala & Kristian Bär & Ingo Sass, 2022. "Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts," Energies, MDPI, vol. 15(24), pages 1-21, December.
    16. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    17. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    18. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    19. Muhammad Haris & Michael Z. Hou & Wentao Feng & Jiashun Luo & Muhammad Khurram Zahoor & Jianxing Liao, 2020. "Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems," Energies, MDPI, vol. 13(13), pages 1-21, July.
    20. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:132:y:2017:i:c:p:305-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.