IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp1098-1107.html
   My bibliography  Save this article

Cascade-based short-term forecasting method of the electric demand of HVAC system

Author

Listed:
  • Le Cam, M.
  • Zmeureanu, R.
  • Daoud, A.

Abstract

This paper presents a multi-step-ahead forecasting method of the electric demand in a large institutional building to be used in the context of demand response control strategy. A cascade-based method is proposed for electric demand forecasting of the cooling system over the next six hours with a time-step of 15 min. Data mining techniques are used for pre-processing the measurements and improving the forecasting models. Data-driven models are developed by using Building Automation System (BAS) trend data of an existing building. First, the air flow rate supplied by the Air Handling Units (AHUs) is forecasted, followed by the cooling coils load, and the whole building cooling load. Finally, the electric demand of the supply fans, chillers and cooling towers, and the total electric demand of the cooling system of the building are forecasted over six hours. The comparison of the forecasted electric demand of the cooling system for the existing building over the six-hour test and the measurements show good agreement with CV(RMSE) of 14.2–22.5%.

Suggested Citation

  • Le Cam, M. & Zmeureanu, R. & Daoud, A., 2017. "Cascade-based short-term forecasting method of the electric demand of HVAC system," Energy, Elsevier, vol. 119(C), pages 1098-1107.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1098-1107
    DOI: 10.1016/j.energy.2016.11.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216316930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Touretzky, Cara R. & Patil, Rakesh, 2015. "Building-level power demand forecasting framework using building specific inputs: Development and applications," Applied Energy, Elsevier, vol. 147(C), pages 466-477.
    2. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    3. Ghofrani, M. & Ghayekhloo, M. & Arabali, A. & Ghayekhloo, A., 2015. "A hybrid short-term load forecasting with a new input selection framework," Energy, Elsevier, vol. 81(C), pages 777-786.
    4. Ko, Chia-Nan & Lee, Cheng-Ming, 2013. "Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter," Energy, Elsevier, vol. 49(C), pages 413-422.
    5. Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.
    6. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    7. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    8. Zeng, Yaohui & Zhang, Zijun & Kusiak, Andrew, 2015. "Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms," Energy, Elsevier, vol. 86(C), pages 393-402.
    9. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    10. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    11. Jurado, Sergio & Nebot, Àngela & Mugica, Fransisco & Avellana, Narcís, 2015. "Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques," Energy, Elsevier, vol. 86(C), pages 276-291.
    12. Che, Jinxing & Wang, Jianzhou & Wang, Guangfu, 2012. "An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting," Energy, Elsevier, vol. 37(1), pages 657-664.
    13. Jason Grant & Moataz Eltoukhy & Shihab Asfour, 2014. "Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks," Energies, MDPI, vol. 7(4), pages 1-19, March.
    14. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    15. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    2. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    2. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    3. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    4. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    5. Tomasz Szul & Sylwester Tabor & Krzysztof Pancerz, 2021. "Application of the BORUTA Algorithm to Input Data Selection for a Model Based on Rough Set Theory (RST) to Prediction Energy Consumption for Building Heating," Energies, MDPI, vol. 14(10), pages 1-13, May.
    6. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    7. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    8. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    9. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    10. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    11. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    12. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    13. Zhao, Deyin & Zhong, Ming & Zhang, Xu & Su, Xing, 2016. "Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining," Energy, Elsevier, vol. 102(C), pages 660-668.
    14. Kusiak, Andrew & Xu, Guanglin, 2012. "Modeling and optimization of HVAC systems using a dynamic neural network," Energy, Elsevier, vol. 42(1), pages 241-250.
    15. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    16. Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
    17. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    18. Dadkhah, Mojtaba & Jahangoshai Rezaee, Mustafa & Zare Chavoshi, Ahmad, 2018. "Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed," Energy, Elsevier, vol. 148(C), pages 775-788.
    19. Guiqiang Wang & Haiman Wang & Zhiqiang Kang & Guohui Feng, 2020. "Data-Driven Optimization for Capacity Control of Multiple Ground Source Heat Pump System in Heating Mode," Energies, MDPI, vol. 13(14), pages 1-15, July.
    20. Paiho, Satu & Kiljander, Jussi & Sarala, Roope & Siikavirta, Hanne & Kilkki, Olli & Bajpai, Arpit & Duchon, Markus & Pahl, Marc-Oliver & Wüstrich, Lars & Lübben, Christian & Kirdan, Erkin & Schindler,, 2021. "Towards cross-commodity energy-sharing communities – A review of the market, regulatory, and technical situation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1098-1107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.