IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v108y2016icp93-98.html
   My bibliography  Save this article

Schlieren visualization of a GDI spray impacting on a heated wall: Non-vaporizing and vaporizing evolutions

Author

Listed:
  • Allocca, L.
  • Lazzaro, M.
  • Meccariello, G.
  • Montanaro, A.

Abstract

The DI (Direct Injection) in SI (Spark Ignition) engines is rapidly developing and seems very attractive offering the possibility of multi-mode operation, homogeneous and stratified charge, with valuable benefits respect to conventional PFI (Port Fuel Injection). One of the major drawbacks of the GDI-fueled engine is the impingement of liquid fuel on the combustion chamber walls that generally produces an increasing of HC emissions and detrimental effects on the combustion process, like soot formation in the wall guided engines due to the diffusive combustion of fuel film deposits on the piston head.

Suggested Citation

  • Allocca, L. & Lazzaro, M. & Meccariello, G. & Montanaro, A., 2016. "Schlieren visualization of a GDI spray impacting on a heated wall: Non-vaporizing and vaporizing evolutions," Energy, Elsevier, vol. 108(C), pages 93-98.
  • Handle: RePEc:eee:energy:v:108:y:2016:i:c:p:93-98
    DOI: 10.1016/j.energy.2015.09.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215013171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    2. Harshavardhan, Ballapu & Mallikarjuna, J.M., 2015. "Effect of piston shape on in-cylinder flows and air–fuel interaction in a direct injection spark ignition engine – A CFD analysis," Energy, Elsevier, vol. 81(C), pages 361-372.
    3. Costa, M. & Marchitto, L. & Merola, S.S. & Sorge, U., 2014. "Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging," Energy, Elsevier, vol. 77(C), pages 88-96.
    4. Allocca, Luigi & Mancaruso, Ezio & Montanaro, Alessandro & Sequino, Luigi & Vaglieco, Bianca Maria, 2014. "Evaluation of RME (rapeseed methyl ester) and mineral diesel fuels behaviour in quiescent vessel and EURO 5 engine," Energy, Elsevier, vol. 77(C), pages 783-790.
    5. Karavalakis, Georgios & Short, Daniel & Vu, Diep & Russell, Robert L. & Asa-Awuku, Akua & Jung, Heejung & Johnson, Kent C. & Durbin, Thomas D., 2015. "The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines," Energy, Elsevier, vol. 82(C), pages 168-179.
    6. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    2. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    3. Liu, Yi & Pei, Yiqiang & Wang, Chenxi & Guo, Ruitao & Xu, Bei, 2019. "Characteristics of the deposited fuel liquid film when GDI spray impacts viscous oil film," Energy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keskinen, Karri & Kaario, Ossi & Nuutinen, Mika & Vuorinen, Ville & Künsch, Zaira & Liavåg, Lars Ola & Larmi, Martti, 2016. "Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects," Energy, Elsevier, vol. 94(C), pages 542-556.
    2. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    3. Xiao, Gang & Jia, Ming & Wang, Tianyou, 2016. "Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model," Energy, Elsevier, vol. 97(C), pages 20-35.
    4. Zhang, Zhifei & Li, Tie & Shi, Weiquan, 2019. "Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets," Energy, Elsevier, vol. 171(C), pages 372-384.
    5. Wang, Haiou & Luo, Kun & Fan, Jianren, 2012. "Direct numerical simulation and CMC (conditional moment closure) sub-model validation of spray combustion," Energy, Elsevier, vol. 46(1), pages 606-617.
    6. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    7. Costa, M. & Marchitto, L. & Merola, S.S. & Sorge, U., 2014. "Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging," Energy, Elsevier, vol. 77(C), pages 88-96.
    8. Pastor, J.V. & Bermúdez, V. & García-Oliver, J.M. & Ramírez-Hernández, J.G., 2011. "Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines," Energy, Elsevier, vol. 36(9), pages 5486-5496.
    9. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    10. Liu, Haoye & Li, Ziyang & Xu, Hongming & Ma, Xiao & Shuai, Shijin, 2020. "Nucleation mode particle evolution in a gasoline direct injection engine with/without a three-way catalyst converter," Applied Energy, Elsevier, vol. 259(C).
    11. Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2016. "Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation," Energy, Elsevier, vol. 112(C), pages 264-272.
    12. Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
    13. V. G. Kamaltdinov & V. A. Markov & I. O. Lysov & A. A. Zherdev & V. V. Furman, 2019. "Experimental Studies of Fuel Injection in a Diesel Engine with an Inclined Injector," Energies, MDPI, vol. 12(14), pages 1-18, July.
    14. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    15. Cheolwoong Park & Taeyoung Kim & Gyubaek Cho & Janghee Lee, 2016. "Combustion and Emission Characteristics According to the Fuel Injection Ratio of an Ultra-Lean LPG Direct Injection Engine," Energies, MDPI, vol. 9(11), pages 1-12, November.
    16. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    17. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    18. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    19. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    20. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:108:y:2016:i:c:p:93-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.