IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp385-396.html
   My bibliography  Save this article

A waste cold recovery from the exhausted cryogenic nitrogen by using thermoelectric power generator

Author

Listed:
  • Weng, Chien-Chou
  • Lin, Ming-Chyuan
  • Huang, Mei-Jiau

Abstract

Waste energy appears in the form of waste heat as well as waste cold. Among all, cryogenic nitrogen is the most common cold source and is extensively used in the industry and laboratories. An intuitive way to recover waste cold is applying TEGs (thermoelectric power generators) due to the observed huge temperature difference between the exhausted cryogenic fluid and the ambience. The purpose of this work is to investigate such a waste cold recovery system analytically and experimentally. Confirmed through a model analysis and by experimental measurements, the system works successfully and cascade TEG modules are suggested for accessing more temperature difference and thus generating more power. However, the measured power generation rates are less than the predictions. The ice frozen over the thermal spreader, which is not taken into consideration in the model, must take the responsibility. Still, a power generation rate as high as 0.93 W was obtained by the proposed prototype with four two-layer cascade TEG modules and a mass flow rate of cryogenic nitrogen of 3.6 g/s.

Suggested Citation

  • Weng, Chien-Chou & Lin, Ming-Chyuan & Huang, Mei-Jiau, 2016. "A waste cold recovery from the exhausted cryogenic nitrogen by using thermoelectric power generator," Energy, Elsevier, vol. 103(C), pages 385-396.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:385-396
    DOI: 10.1016/j.energy.2016.02.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauhan, Amisha & Trembley, Jon & Wrobel, Luiz C. & Jouhara, Hussam, 2019. "Experimental and CFD validation of the thermal performance of a cryogenic batch freezer with the effect of loading," Energy, Elsevier, vol. 171(C), pages 77-94.
    2. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    3. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    4. Yilbas, Bekir Sami & Akhtar, S.S. & Sahin, A.Z., 2016. "Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations," Energy, Elsevier, vol. 114(C), pages 52-63.
    5. Hsu, Ping-Chia & Saragih, Ahmad Abror & Huang, Mei-Jiau & Juang, Jia-Yang, 2022. "New machine functions using waste heat recovery: A case study of atmospheric pressure plasma jet," Energy, Elsevier, vol. 239(PD).
    6. Ge, Minghui & Li, Zhenhua & Wang, Yeting & Zhao, Yulong & Zhu, Yu & Wang, Shixue & Liu, Liansheng, 2021. "Experimental study on thermoelectric power generation based on cryogenic liquid cold energy," Energy, Elsevier, vol. 220(C).
    7. Zhang, Tongtong & She, Xiaohui & You, Zhanping & Zhao, Yanqi & Fan, Hongjun & Ding, Yulong, 2022. "Cryogenic thermoelectric generation using cold energy from a decoupled liquid air energy storage system for decentralised energy networks," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:385-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.