IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v100y2016icp115-128.html
   My bibliography  Save this article

Maximum-efficiency architectures for heat- and work-regenerative gas turbine engines

Author

Listed:
  • Ramakrishnan, Sankaran
  • Edwards, Christopher F.

Abstract

This study establishes maximum-efficiency architectures for heat- and work-regenerative gas turbine engines using a systematic irreversibility minimization approach. It considers engine architectures that employ two kinds of energy transfers: heat and work. It does not assume any cycle a priori (e.g., heat-recuperative reactive Brayton cycle). Instead, the maximum-efficiency architecture is directly deduced from first principles. Not surprisingly, the optimal architecture has some conventional features such as regenerative heat transfer from post-expansion combustion products to post-compression air, and external heat transfer out during compression (intercooling). But in addition it has three non-conventional features. First, unlike conventional heat recuperation heat is withdrawn between expansion turbine stages and transferred to post-compression air. Second, air is further compressed after heating. Third, compression is required to be part intercooled and part non-intercooled.

Suggested Citation

  • Ramakrishnan, Sankaran & Edwards, Christopher F., 2016. "Maximum-efficiency architectures for heat- and work-regenerative gas turbine engines," Energy, Elsevier, vol. 100(C), pages 115-128.
  • Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:115-128
    DOI: 10.1016/j.energy.2016.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216000657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramakrishnan, Sankaran & Edwards, Christopher F., 2014. "Maximum-efficiency architectures for steady-flow combustion engines, II: Work-regenerative gas turbine engines," Energy, Elsevier, vol. 72(C), pages 58-68.
    2. Erbay, L. Berrin & Göktun, Selahattin & Yavuz, Hasbi, 2001. "Optimal design of the regenerative gas turbine engine with isothermal heat addition," Applied Energy, Elsevier, vol. 68(3), pages 249-264, March.
    3. Ramakrishnan, Sankaran & Edwards, Christopher F., 2014. "Maximum-efficiency architectures for steady-flow combustion engines, I: Attractor trajectory optimization approach," Energy, Elsevier, vol. 72(C), pages 44-57.
    4. Ramakrishnan, Sankaran & Edwards, Christopher F., 2014. "Unifying principles of irreversibility minimization for efficiency maximization in steady-flow chemically-reactive engines," Energy, Elsevier, vol. 68(C), pages 844-853.
    5. Caton, Jerald A, 2000. "On the destruction of availability (exergy) due to combustion processes — with specific application to internal-combustion engines," Energy, Elsevier, vol. 25(11), pages 1097-1117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
    2. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    3. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Carolino, Cristina Guedes & Medeiros Ferreira, João Paulo, 2013. "First and second law analyses to an energetic valorization process of biogas," Renewable Energy, Elsevier, vol. 59(C), pages 58-64.
    5. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    6. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    7. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    8. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    9. Wang, Chao & Chen, Lingen & Xia, Shaojun & Sun, Fengrui, 2016. "Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor," Energy, Elsevier, vol. 99(C), pages 152-158.
    10. Saxena, Samveg & Shah, Nihar & Bedoya, Ivan & Phadke, Amol, 2014. "Understanding optimal engine operating strategies for gasoline-fueled HCCI engines using crank-angle resolved exergy analysis," Applied Energy, Elsevier, vol. 114(C), pages 155-163.
    11. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2014. "Thermodynamics of premixed combustion in a heat recirculating micro combustor," Energy, Elsevier, vol. 68(C), pages 510-518.
    12. Feng, Hongqing & Liu, Daojian & Yang, Xiaoxi & An, Ming & Zhang, Weiwen & Zhang, Xiaodong, 2016. "Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 96(PA), pages 281-294.
    13. Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
    14. Arjmandi, H.R. & Amani, E., 2015. "A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber," Energy, Elsevier, vol. 81(C), pages 706-718.
    15. Rakopoulos, C.D. & Giakoumis, E.G., 2006. "Comparative first- and second-law parametric study of transient diesel engine operation," Energy, Elsevier, vol. 31(12), pages 1927-1942.
    16. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    17. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    18. Prins, M.J. & Ptasinski, K.J., 2005. "Energy and exergy analyses of the oxidation and gasification of carbon," Energy, Elsevier, vol. 30(7), pages 982-1002.
    19. Sayadzadeh, Mohammad Esmaiel & Samani, Majid Riahi & Toghraie, Davood & Emami, Sobhan & Eftekhari, Seyed Ali, 2023. "Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion," Energy, Elsevier, vol. 278(PB).
    20. Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:100:y:2016:i:c:p:115-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.