IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v144y2025ics0140988325001562.html
   My bibliography  Save this article

Distributional forecasting of electricity DART spreads with a covariate-dependent mixture model

Author

Listed:
  • Forgetta, Anthony
  • Godin, Frédéric
  • Augustyniak, Maciej

Abstract

We develop a covariate-dependent mixture model to describe the behavior of electricity DART spreads, which are differentials between day-ahead and real-time prices of electricity. The model includes three regimes: a regular DART regime, a positive spike regime, and a negative spike regime. The model exhibits sufficient flexibility to allow covariates impacting both the frequency and severity of DART spread spikes, and to reproduce salient stylized facts of DART spread dynamics. The covariates considered include forecasts for load, weather, and natural gas prices. The application of our model on data from the Long Island zone of the NYISO (New York Independent System Operator) exhibits a satisfactory fit to the data. Numerical experiments reveal that including covariates in the severity component of the model is crucial, while mild additional performance is obtained with their inclusion in the frequency component. Furthermore, neural network-based quantile regression benchmarks are unable to improve performance over our mixture model.

Suggested Citation

  • Forgetta, Anthony & Godin, Frédéric & Augustyniak, Maciej, 2025. "Distributional forecasting of electricity DART spreads with a covariate-dependent mixture model," Energy Economics, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001562
    DOI: 10.1016/j.eneco.2025.108332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988325001562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2025.108332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Rafal Weron, 2014. "A review of electricity price forecasting: The past, the present and the future," HSC Research Reports HSC/14/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    5. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    6. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    7. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    8. Claudia Kluppelberg & Thilo Meyer-Brandis & Andrea Schmidt, 2010. "Electricity spot price modelling with a view towards extreme spike risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 963-974.
    9. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    10. repec:bla:jfinan:v:59:y:2004:i:4:p:1877-1900 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    2. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    3. Cerasa, Andrea & Zani, Alessandro, 2025. "Enhancing electricity price forecasting accuracy: A novel filtering strategy for improved out-of-sample predictions," Applied Energy, Elsevier, vol. 383(C).
    4. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    5. Donglan Liu & Xin Liu & Kun Guo & Qiang Ji & Yingxian Chang, 2023. "Spillover Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under Climate Risk," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    6. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    7. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    8. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    9. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
    10. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    11. Maren Diane Schmeck, 2016. "Pricing options on forwards in energy markets: the role of mean reversion's speed," Papers 1602.03402, arXiv.org.
    12. Nicolas Boursin & Carl Remlinger & Joseph Mikael & Carol Anne Hargreaves, 2022. "Deep Generators on Commodity Markets; application to Deep Hedging," Papers 2205.13942, arXiv.org.
    13. Kristina Rognlien Dahl, 2019. "Management of a hydropower system via convex duality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 43-71, February.
    14. Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
    15. Aurélien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Post-Print hal-04358505, HAL.
    16. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    17. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    18. Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.
    19. Nicolas Boursin & Carl Remlinger & Joseph Mikael, 2022. "Deep Generators on Commodity Markets Application to Deep Hedging," Risks, MDPI, vol. 11(1), pages 1-18, December.
    20. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • N72 - Economic History - - Economic History: Transport, International and Domestic Trade, Energy, and Other Services - - - U.S.; Canada: 1913-

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.