IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i1p70-84.html
   My bibliography  Save this article

Dynamic pickup-and-delivery for collaborative platforms with time-dependent travel and crowdshipping

Author

Listed:
  • Stoia, Sara
  • Laganà, Demetrio
  • Ohlmann, Jeffrey W.

Abstract

We study a pickup-and-delivery problem that arises when customers randomly submit requests over the course of a day from a choice of vendors on a collaborative e-commerce portal. Based on the attributes of a customer request, a dispatcher dynamically schedules the delivery service on either a dedicated vehicle or a crowdshipper, both of whom experience time-dependent travel times. While dedicated vehicles are available throughout the day, the availability of crowdshippers is unknown a priori and they appear randomly for only portions of the day. With an objective of minimizing the sum of routing costs, piece-rate crowdshipper payments, and lateness charges, we model the uncertainty in request arrivals and crowdshipper appearances as a Markov decision process. To determine an action at each decision epoch, we employ a heuristic that partially destroys the existing routes and repairs them under the guidance of a parameterized cost function approximation that accounts for the remaining temporal capacity of delivery vehicles. We benchmark our real-time heuristic with an adaptive large neighborhood search and demonstrate the effectiveness of our method with several performance metrics. In addition, we conduct computational experiments to demonstrate the impact of inserting wait time in the route scheduling and the benefit of explicitly modeling time-dependent travel times. Through our computational testing, we also investigate the potential of demand management mechanisms that facilitate many-to-one request bundles or one-to-many request bundles to reduce the cost to service requests.

Suggested Citation

  • Stoia, Sara & Laganà, Demetrio & Ohlmann, Jeffrey W., 2025. "Dynamic pickup-and-delivery for collaborative platforms with time-dependent travel and crowdshipping," European Journal of Operational Research, Elsevier, vol. 322(1), pages 70-84.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:1:p:70-84
    DOI: 10.1016/j.ejor.2024.09.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724007513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.09.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    2. Veaceslav Ghilas & Jean-François Cordeau & Emrah Demir & Tom Van Woensel, 2018. "Branch-and-Price for the Pickup and Delivery Problem with Time Windows and Scheduled Lines," Transportation Science, INFORMS, vol. 52(5), pages 1191-1210, October.
    3. Marlin Ulmer & Martin Savelsbergh, 2020. "Workforce Scheduling in the Era of Crowdsourced Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1113-1133, July.
    4. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    5. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    6. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    7. Thibaut Vidal & Rafael Martinelli & Tuan Anh Pham & Minh Hoàng Hà, 2021. "Arc Routing with Time-Dependent Travel Times and Paths," Transportation Science, INFORMS, vol. 55(3), pages 706-724, May.
    8. Chen, Xinwei & Ulmer, Marlin W. & Thomas, Barrett W., 2022. "Deep Q-learning for same-day delivery with vehicles and drones," European Journal of Operational Research, Elsevier, vol. 298(3), pages 939-952.
    9. Adam Behrendt & Martin Savelsbergh & He Wang, 2023. "A Prescriptive Machine Learning Method for Courier Scheduling on Crowdsourced Delivery Platforms," Transportation Science, INFORMS, vol. 57(4), pages 889-907, July.
    10. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
    11. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    12. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    13. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "A survey on dynamic and stochastic vehicle routing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 215-231, January.
    14. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    15. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    16. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    17. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    18. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2008. "The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments," European Journal of Operational Research, Elsevier, vol. 185(2), pages 534-551, March.
    19. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).
    20. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    21. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    22. Iman Dayarian & Martin Savelsbergh, 2020. "Crowdshipping and Same‐day Delivery: Employing In‐store Customers to Deliver Online Orders," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2153-2174, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingxin Wen & Haoting Meng, 2025. "Time-Dependent Multi-Center Semi-Open Heterogeneous Fleet Path Optimization and Charging Strategy," Mathematics, MDPI, vol. 13(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    3. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    4. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
    5. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    6. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2024. "Compensation guarantees in crowdsourced delivery: Impact on platform and driver welfare," Omega, Elsevier, vol. 122(C).
    7. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    8. Martin Savelsbergh & Marlin W. Ulmer, 2024. "Challenges and opportunities in crowdsourced delivery planning and operations—an update," Annals of Operations Research, Springer, vol. 343(2), pages 639-661, December.
    9. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    10. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    11. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    12. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    13. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    14. Auad, Ramon & Erera, Alan & Savelsbergh, Martin, 2023. "Courier satisfaction in rapid delivery systems using dynamic operating regions," Omega, Elsevier, vol. 121(C).
    15. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    16. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
    17. Du, Jianhui & Zhang, Zhiqin & Wang, Xu & Lau, Hoong Chuin, 2023. "A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    19. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    20. Li, Meng & Cai, Kaiquan & Zhao, Peng, 2025. "Optimizing same-day delivery with vehicles and drones: A hierarchical deep reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:1:p:70-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.