IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i1p87-100.html
   My bibliography  Save this article

Multiobjective optimization for complex flexible job-shop scheduling problems

Author

Listed:
  • Tamssaouet, Karim
  • Dauzère-Pérès, Stéphane
  • Knopp, Sebastian
  • Bitar, Abdoul
  • Yugma, Claude

Abstract

In this paper, we are concerned with the resolution of a multiobjective complex job-shop scheduling problem stemming from semiconductor manufacturing. To produce feasible and industrially meaningful schedules, this paper extends the recently proposed batch-oblivious approach by considering unavailability periods and minimum time lags and by simultaneously optimizing multiple criteria that are relevant in the industrial context. A novel criterion on the satisfaction of production targets decided at a higher level is also proposed. Because the solution approach must be embedded in a real-time application, decision makers must express their preferences before the optimization phase. In addition, a preference model is introduced where trade-off is only allowed between some criteria. Two a priori multiobjective extensions of Simulated Annealing are proposed, which differ in how the simultaneous use of a lexicographic order and weights is handled when evaluating the fitness. A known a posteriori approach of the literature is used as a benchmark. All the metaheuristics are embedded in a Greedy Randomized Adaptive Search Procedure. The different versions of the archived GRASP approach are compared using large industrial instances. The numerical results show that the proposed approach provides good solutions regarding the preferences. Finally, the comparison of the optimized schedules with the actual factory schedules shows the significant improvements that our approach can bring.

Suggested Citation

  • Tamssaouet, Karim & Dauzère-Pérès, Stéphane & Knopp, Sebastian & Bitar, Abdoul & Yugma, Claude, 2022. "Multiobjective optimization for complex flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 296(1), pages 87-100.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:87-100
    DOI: 10.1016/j.ejor.2021.03.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    2. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    3. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    4. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
    5. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    6. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
    7. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, December.
    8. Mati, Yazid & Dauzère-Pérès, Stèphane & Lahlou, Chams, 2011. "A general approach for optimizing regular criteria in the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 212(1), pages 33-42, July.
    9. Aggoune, Riad, 2004. "Minimizing the makespan for the flow shop scheduling problem with availability constraints," European Journal of Operational Research, Elsevier, vol. 153(3), pages 534-543, March.
    10. Muhammad Kamal Amjad & Shahid Ikramullah Butt & Rubeena Kousar & Riaz Ahmad & Mujtaba Hassan Agha & Zhang Faping & Naveed Anjum & Umer Asgher, 2018. "Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-32, February.
    11. Loukil, Taicir & Teghem, Jacques & Fortemps, Philippe, 2007. "A multi-objective production scheduling case study solved by simulated annealing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 709-722, June.
    12. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    13. Shwu-Min Horng, John W. Fowler, Jeffery K. Cochran, 2000. "A genetic algorithm approach to manage ion implantation processes in wafer fabrication," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 1(2/3), pages 156-172.
    14. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    15. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    16. Dauzere-Peres, S. & Roux, W. & Lasserre, J. B., 1998. "Multi-resource shop scheduling with resource flexibility," European Journal of Operational Research, Elsevier, vol. 107(2), pages 289-305, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    2. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    2. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    3. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    4. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    5. Drótos, Márton & Erdos, Gábor & Kis, Tamás, 2009. "Computing lower and upper bounds for a large-scale industrial job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 296-306, August.
    6. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    7. Hong-Sen Yan & Wen-Chao Li, 2017. "A multi-objective scheduling algorithm with self-evolutionary feature for job-shop-like knowledgeable manufacturing cell," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 337-351, February.
    8. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    9. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    10. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    11. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    12. Sanja Petrovic & Carole Fayad & Dobrila Petrovic & Edmund Burke & Graham Kendall, 2008. "Fuzzy job shop scheduling with lot-sizing," Annals of Operations Research, Springer, vol. 159(1), pages 275-292, March.
    13. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    14. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    15. Varela, Ramiro & Vela, Camino R. & Puente, Jorge & Gomez, Alberto, 2003. "A knowledge-based evolutionary strategy for scheduling problems with bottlenecks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 57-71, February.
    16. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    17. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    18. Christophe Sauvey & Wajdi Trabelsi & Nathalie Sauer, 2020. "Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    19. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    20. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:87-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.